Public release date: 20-Nov-2012 [ | E-mail | Share ]
Contact: Steve Offner s.offner@unsw.edu.au 61-293-851-583 University of New South Wales
In a world-first, researchers from the Australian Centre for Nanomedicine at the University of New South Wales (UNSW) in Sydney have developed a nanoparticle that could improve the effectiveness of chemotherapy for neuroblastoma by a factor of five.
Neuroblastoma is an aggressive childhood cancer that often leaves survivors with lingering health problems due to the high doses of chemotherapy drugs required for treatment. Anything that can potentially reduce these doses is considered an important development.
The UNSW researchers developed a non-toxic nanoparticle that can deliver and release nitric oxide (NO) to specific cancer cells in the body. The findings of their in vitro experiments have been published in the journal Chemical Communications.
"When we injected the chemo drug into the neuroblastoma cells that had been pre-treated with our new nitric oxide nanoparticle we needed only one-fifth the dose," says co-author Dr Cyrille Boyer from the School of Chemical Engineering at UNSW.
"By increasing the effectiveness of these chemotherapy drugs by a factor of five, we could significantly decrease the detrimental side-effects to healthy cells and surrounding tissue."
This synergistic effect between nitric oxide and chemotherapy drugs had previously been reported in other cancer cell lines, but the delivery compounds were potentially toxic and had very poor stability, or shelf life.
In contrast, the UNSW-developed nanoparticle is non-toxic and has a shelf life that has been extended from two days to more than two weeks: "Drug storage is critical and this is a substantial improvement over previous nitric oxide-carrier compounds," says Boyer.
Nitric Oxide is an important cellular signalling molecule involved in many physical and mental processes, and deficiencies have been associated with heightened susceptibility to cancer, liver fibrosis, diabetes, cardiovascular illnesses and neurodegenerative diseases.
Read the original:
Nanomedicine breakthrough could improve chemotherapy for childhood cancer