Page 11234..1020..»

Category Archives: Stem Cell Research

What is Stem Cell Research? (with pictures) – wiseGEEK

Posted: December 16, 2017 at 7:41 pm

anon950526Post 156

Is there any impact due to this?

Obviously, some of you dont have kids. The life of a child is worth so much more than any adult. You got to live. What if that embryo happened to be you? Would you then feel that it is OK to conduct this research?

I am a mother of two, soon to be three. I don’t care about any of that just long as my kids at least get a chance at living and there is a God. I had a 50 percent chance of having babies because of a huge benign tumor that grew on my left ovary and killed my left fallopian tube.

I prayed for my babies and got them every time. Besides that, everybody has their

I watched this gruesome abortion video and the lady was 12 weeks along. You could see the child trying to fight for its life. Murder is murder. Helping to save other people or not — that’s like you seeing a man trying to rape a woman and you shoot him dead. It’s the same if you were trying to save her life but you get persecuted and convicted for taking matters into your own hands. I am sorry for those people who are sick and have sick babies. I know what it is like to lose loved ones over untreatable diseases. Im against embryo research and I’m not thinking about me. It is about a baby. Sure, it isnt completely formed, but it’s still a child, or at least will grow into one, I wish harm on nobody. There is no harm meant and Im not trying to make someone mad. Im just trying to throw some new views into the situation.

Stem cell research can only benefit society and advance us as a species. If your argument is religious, the you are not thinking. You are letting your emotions and beliefs speak for you, not your logic or common sense. A bunch of cells is not a baby, and helping the living is not against “God’s will”. This is a good thing and it will continue regardless of religious views, because it makes sense.

I’m still kind of learning about this topic, but abortion is something I feel strongly against, but if a baby was taken from it’s mother with the mother’s okay and they were trying to save people’s lives, I would be completely okay with that.

I believe that God does not exist, and that stem cell research is truly phenomenal. This research should not be controversial, nor should it be banned; it is helping the living.

Most of the people who say that stem cell research is bad are religious, but people living in the real world and believe in this thing called ‘science’ actually make a difference. Religion has only held back society and science. I wonder how many religious people would get angry if they knew that I was a homosexual, atheist physicist who believes in evolution and the big bang theory.

I am writing a persuasive essay on whether stem cell research should be legal or not (even though it already is in the U.S.). I was never a really religious person and stuck mainly to things that I knew for sure were happening. The thing is, most of the stem cells they are using for research are going to be discarded anyway. No one is claiming them, no one is caring about them, and they are just going to be thrown away. It is better for them to be used for a greater cause than just being thrown away and losing the chance to create treatments and cures for cancer and neurodegenerative diseases.

Without trying to offend anyone, please don’t

bring God into this, like if you’re going to simply take the stem cells and create babies with them. The cells could be considered early life, but you lose cells every day and no one gives it a second thought. I am thirteen years old and sorry if you believe that I am wrong.

This is a terrible thing. Stem cell research is just an excuse for making us Americans pay for other peoples’ abortions. This stem cell research crap may have fooled my friends who claim abortion is when the baby isn’t fully developed and that it’s murder to kill a baby after it’s born. What’s the difference? Abortion is murder.

This country is so corrupt it will probably start killing the elderly and calling it abortion, or calling every day murder of people abortion. Well, I have had enough of this crap Obama is trying to trick us with. God says life is precious and an undeveloped baby is made of many cells and cells are alive. Think about that, America. Not only that, but abortion is unnecessary. If a girl gets raped, she can put the baby up for adoption instead of murdering the baby. Studies show many women who had abortions regret it.

So what you are all arguing about is if god exists and whats his plan for us, and why or why should we not use pre-embryo stem cells. It’s completely your own opinion, but when does life start for a baby — when the sperm reaches the egg or when you hear his heartbeat?

I, for one, say we should not use embryo stem cells because they are a living being. Also for all of you who say its gods plan for us, who created god? He could not just have created himself out of nowhere. These are just my thoughts. But these are all still questions we do not know the answer to.

I’ve been researching this Stem Cell subject for a long time, and I’m so amazed at everyone’s stories from the news and sites on how stem cells has helped them recover from so many types of sicknesses and diseases. Even cancer can be cured by this type of treatment.

One big factor is that it’s not a drug but it will just treat your body in a nice and natural way. Stem cell therapy is nice but I found this Laminine on the market. People keep on talking about it, saying it’s the new science breakthrough and that I should give a try. It’s not a literal stem cell but it is a stem cell enhancer, and safer than the usual way of Stem Cell Therapy.

I gave it a try and in just a few weeks I felt its proven power that I also recommend it to everyone out there.

How is that clump of cells considered a newborn? Those cells aren’t a newborn because there’s still a chance that once you implant those embryos they don’t hold, so it’s not a child. They don’t take these people’s cells then say, nope you can’t have your child — we’re going to use them for someone else. They’re leftovers. No one is going to use them and they are going to get discarded. If you consider it a human how is it humane to let it sit there frozen forever, discarded and unloved? People throwing god around are ignorant. Not everyone believes in your “creator” and don’t throw it in my face. Believe in your beliefs, but don’t force mine.

@post 52: If there is no God, who do you think made the universe? Your dad didn’t make it, I didn’t make, you didn’t make, nor did any person. Only an eternal being must have made the universe.

Look. What none of you guys are realizing is that embryonic stem cell research doesn’t focus solely on embryos.

I’m a student getting my masters degree in pediatric nursing, so you guys can’t say I don’t know this. But maybe if you did some research instead of arguing that everyone except yourself is wrong, you would realize there are valid points to both sides.

Embryonic stem cell research also focuses on umbilical cords and placentas, which does no harm to the baby whatsoever. Now none of you can say that’s “murder” or against your religion because I’m Roman Catholic, which is one of the main religions against stem cell research and I am personally all for it.

Now if embryos

Enough about manipulating death and being religiously wrong. Enough said, simple as that.

A novel called “Living Proof” just came out in stores this week that explores the life and death issue of embryonic stem cell research for the first time as a story. It’s getting a lot of buzz online and pertains directly to this discussion.

Most say stem cell research is bad because scientists are trying to pay God, but that’s a bunch of crap. Like what others have said, God created us, knowing that one day we would come up with this knowledge to maybe find cures. Somebody else stated that we are ungrateful because we want to use this research, but that’s not entirely true, because we are grateful for this new research to cure people like me. Yes I said me. I’m a 16 year old diabetic. I may not suffer as much as others with other diseases, but I have.

Also, this same person said that we should be the ones serving overseas. Well, if you’ve paid attention, we can’t because

Anyway, most don’t know what it’s like to stick a big needle into their own skin every day, but I do. They also don’t know what its like to wake up very weak due to a low blood sugar, or to throw up because you get ketones due to not having any more insulin going through their body.

Lastly, most of you probably aren’t scared to go to bed, knowing that you might not wake up because you went low, with no one knowing and died. Yes, I know diabetes isn’t the worse disease out there, but it’s not easy either. I don’t really like abortion, but at least the fetus could help cure many people, and not just get thrown away.

In a way, the government not allowing stem cell research, and the people against it can be considered murderers too, because they are standing in the way of curing people, which could save their lives. This is how our country is going downhill, not the other way around.

Finally, you say how a human life is so important, and yes it is, but who’s to say that an animal’s life isn’t? People abuse animals, use them to test new products, that most people use, but I don’t see you caring about that. Yes, some people do, but most don’t give a crap. And I mean, didn’t God create animals too, so shouldn’t they be just as important as humans?

Yeah, so that’s all I have to say. Hopefully this will make people use their brains a little more, because the people who are against it only really seem to care about themselves, not the people who are actually suffering!

The controversy surrounding the morality of stem cell research is centered around the creation, usage, and destruction of the human embryos. Currently, the limits of technological advancement require the destruction of the human embryo in creating the human embryonic stem cell. Various groups view an embryo as an early-aged human life. As a result, they are concerned with the rights and status of the embryo, and often go so far as to equate such research with murder because of the embryos destruction. However, despite scientific evidence suggesting that the early-stage embryos being used are not early-aged human life, the importance of these embryonic stem cells and their contribution to scientific advancement is tremendous.

Stem cells are cells in the human

John Stuart Mills principle of Utilitarianism also supports the morality of stem cell research. Utilitarianism states that an actions moral worth is determined solely by its contribution to the happiness of all parties involved. The phrase the greatest good for the greatest number of people is often used to describe this principle. But more precisely, the true morality of such research is exhibited in the concept of Negative Utilitarianism. Negative Utilitarianism requires us to promote the least amount of harm, or prevent the greatest amount of suffering for the greatest number of people.

Since science has established that are embryos not yet human, any harm inflicted on them does not weigh in on the moral worth of the action. However, the development of treatments that could potentially cure conditions such as Parkinsons disease and Alzheimers would weigh in on its moral worth. As a result, the prevention of suffering made possible by stem cell research and its potential medical advancements far outweigh any harm inflicted on the embryos, even if the embryos were given moral standing. Thus, by means of Negative Utilitarianism, the morality of stem cell research cannot be called into question.

This is modern day fascism. You shouldn’t choose what life has more importance. Speaking as a veteran, people like this make me regret serving an ungrateful country, full of morally degraded people. These people who believe in this should have been the ones overseas. Then tell me how easy it is to choose one life over the other. Those people make me sick, and will be the downfall of this country.

Fundamentalists never fail to amaze me with their ability to only read half the story. The embryos used in stem cell research would be discarded anyway – stem cell research isn’t denying them a chance at life, they had no chance at life in the first place. It isn’t the same thing as abortion.

And I hope the fundies who are making comments along the lines of “We suffer because God wills it” never take antibiotics when they are sick – surely that would be messing with God’s plan for you to die from a disease that modern science can easily cure?

Any opponent to stem cell research on the grounds of all this embryo is a human life crap is nothing but a ignorant idiotic hypocrite and the same goes for anti abortionists.

Why claim to give a crap at all about so called life when none of you seem to give a crap about the starving millions in underdeveloped countries, the starving on the street, those on death row etc.? What about those lives? Aren’t they more convincing examples of ‘life’ than a pile of embryonic goo? Are they not deserving of all the fuss you make over the value of human life?

You people seem more concerned with spouting your ignorant, selfish beliefs and halting progress that could one

Is there any difference between you people in regards to this and those that shared the same beliefs that used to carry out witch hunts all those many years ago? one has to wonder.

i think that stem cell affords advancements to the medical industry. people should stop trying to use the phrase “who are we to play god”. if that is the case then don’t take medication to relieve pain because under those conditions would that also be playing god?

Remember that some stem cells are taken from the umbilical cord and adult tissue, not just embryos. You wouldn’t call it murder if the cells were taken from an inanimate piece of flesh, would you?

I have been reading comments and “playing god” is stupid. Getting and giving shots are playing god implants and anything like that is playing god. you’re not letting what happens happen. I read about a wife with four kids with Cystic Fibrosis. finding a cure for that would be playing god. That would be taking his power to save a child.

I think it’s all right. People are going to abort fetuses no matter what you say or how you feel. You can say it’s wrong and waste it or you can use it to support something new and know you helped to save a life. Would you honestly say that because of what you think you should throw away something that could help people just because its from something not even alive yet?

O.K. so it might be alive, but at an older age in the pregnancy. And people are right: if someone you love was dying, you would not just sit there and watch and say, oh well, too bad for you. You would try to help no matter what the cost.

I don’t know what is so bad about trying to save life. Stem cell research has advanced into the stages of using actual cells from adults, (Somatic cells) and this is pushing research today. Take some time and do the “current” research about stem cells and educate yourselves.

As far as the religious perspective goes I am a Christian and “God” gave me the cells in my body and if those cells that “God” gave have a way of saving my life, then that is his will. Helping your body heal is not playing God, it is using what God gave you!

I’m curious; What defines something as “live”? When does life begin? Well, does it not begin at fertilization when the cells go through meiosis? And the DNA is replicated? Well here’s what I have to say.

Again, what defines something as a “Live” human? Is it size? Level of development? Environment?

Degree of dependency?

If it’s based on size, then isn’t that size-ism? Does that mean our society is saying that the unborn aren’t human because they aren’t as big as us? Yes, an unborn baby isn’t as big as a toddler, but a toddler isn’t as big as a full grown adult. So does that mean that they toddler isn’t human either? Or in any way less human

Level of development: Some argue that since the unborn aren’t fully developed yet, they aren’t human. I’m 15 and I’m not fully developed; does that mean I’m not human? No. I’m still growing. Development doesn’t stop at birth. It starts at conception.

The most common argument in this category is the baby can’t think, or feel pain, or even know that they exist. I beg to differ. There was an article published in a newspaper that said a doctor was performing an abortion, and on the screen, you could see the baby trying to get away from the tool trying to pull it out. In another, there was a case where the baby stuck its hand out and held onto the doctor’s finger. Look it up.

We say that they can’t feel pain, so they aren’t human. But what about those with Sepa disease? They are born unable to feel pain; can we go and kill them too? They can’t feel pain so they aren’t human, so it’s okay, right? Wrong.

Environment: Most common argument: The unborn baby isn’t in the world yet, it’s in the mother’s body, and it doesn’t even breathe air. This argument seems to be saying that the unborn child isn’t human because it’s in a different environment then we are. But, since when does where we are, determine who we are? In our day to day lives, we change our environment multiple times. But it doesn’t change who we are as a person, unless you have a multiple personality disorder.

So here’s a question; How does the eight-inch trip down the birth canal change who you are as a blob of tissue, into a valued human being with rights? Truth be told, it doesn’t. Another argument is the unborn baby is in the mother’s body, which is her body, so the mother should be able to do what ever she wants with that baby. So what’s the difference between a baby the day before it’s born, and one day after?

A day before: Not fully developed; dependent on the mother; in the mother’s body — her property.

A day after: Not fully developed; dependent on the mother; in the mother’s house — her property

What makes it okay to kill the one but not the other?

There was a case where a man went and murdered a pregnant woman and was charged with double murder. In that case, the government and court are considering that fetus is a life with value. However, in the same time, something like 32 abortions were performed under the protection of the law. How come those babies don’t get the same justification? Is it because they aren’t wanted? If an orphan was murdered, would no one care because they weren’t wanted? Of course not. It’s absurd to me the double standard in our society.

Degree of Dependency: Arguments are that if the unborn baby is still dependent on the mother, and can’t survive on their own yet, they aren’t human. Even a one week old baby is still dependent on the mother. It will be for a while.

Once again, I’m 15 and I can’t survive on my own. I depend on my parents. I depend on my government and school system, I depend on my friends. I’m dependent. But do I not have value and rights?

What about those who depend on medical instruments? And life support?

Parents depend on others to provide them with jobs, food and money, with places for their children to go to get an education. Our classrooms are getting smaller and smaller due to the number of abortions each year. But again, does this affect a person’s humanity in some way because they depend on someone? You’re going through a divorce and you need someone to lean on; you’re depending on them. Oh, yeah, sorry for the bad timing, but oh geez this is tough, you’re not human, so we’re going to have to kill you. No, I don’t think so.

What about those on welfare? Can we kill them too because they depend on the government to provide them with money? I don’t think so. We are all dependent on someone to a degree. But who goes around saying that those who depend on someone are less human or not human at all? No one. Why? Because it’s hypocritical and illogical. But somehow, our society is able to accept this argument when it comes to unborn children. The faces of tomorrow. We are the people are today, and we’re killing tomorrow’s people.

So if we use these arguments to allow the killing of the unborn, then we should be allowed to kill: Any child; those on welfare; those with medical tools and medications; those with mental disabilities. They aren’t what people consider “the norm”- are very dependent, usually have a difference in size, aren’t developed as much as those who are not disabled, and depending on the case, their environment may be different then ours. And so on and so forth.

Of course not. We would never dream of doing that. It upsets many many people even using those cases as examples. So it should be clear that the unborn are human, as well as those with developmental disabilities, differences, different circumstances- welfare, etc., and the sick.

For people who don’t understand, here is what I’m saying. I am pro choice- that women should have choices to do what they want in life from the unimportant (what flavor of ice cream I want) to the extremely important (what career I want to pursue) but should not have the “right” to make a choice about another person’s life. You don’t get to decide who lives or dies.

I do not believe we should use stem cells. If we can cure all diseases and grow back body parts then we will evidently live a very, very, very long time. This could potentially result in an overpopulation problem which we are currently starting to experience.

Humans were not meant to live forever, and maybe you should ask yourself: do you really want to live forever?

To those people who say that it’s okay for scientists to do stem cell research, yes it’s okay for them to do research to improve other people’s lives without using stupid, dangerous chemicals on the cells. Some aspects of stem cell research, is not just against religious values, but also against our morals in general.

Thank you anon332, for trying to knock some sense into these people, who think that science always does good things. Wake up!

Religion is a vessel of our hopes, fears and a face of the unexplained. Without religion, science would grow like a cancer, and without science the other way around. Balance is what is needed.

For those who believe in God, it would not be that with stem cells we are playing God. The man or woman will live because God had willed it.

For those who don’t, embryos are lives. A full life. Of course, this is only my opinion.

The world makes us what we are. It influences our choices and our minds. Everything around us at every moment is changing us.

In short, the world makes us what we are, but we make the world as how it is.

Science without religion is blasphemous. Religion without science is idiocy.

I believe stem cell research is definitely a good thing for people that are sick. I don’t think people should be allowed to use a fetus for the research, but embryonic research is ethical. The embryo isn’t yet developing human characteristics the way a fetus is.

I will begin by saying that I am a 14 year old girl of undecided religious beliefs. I have read many of these comments, and I have a few ideas which may help/clear up some misconceptions.

As of now, I do not officially believe in God. I do, however, understand many religions and I have accepted religious beliefs and ideas, especially those pertaining to abortion and stem cell research. Here are some of my views on the subject. I have tried to incorporate all the different positions on the subject:

1. Embryos are not fetuses and stem cell research is not the same as abortion. Fetuses are developed forms in which the cells have begun to specialize. Embryos are clusters

2. If an embryo is not used, it can be donated, either to research or to another parent, or it can be thrown away. Based on the dilemmas that seem to be arising, i am assuming that no one is of the belief that throwing away the embryos is in the best interest of anyone. That leaves donation to a parent or donation to research. If the decision is made to donate to another parent, then I think that is fine. If that idea is declined, then I don’t see why a group of cells shouldn’t be used to potentially help others. If a leftover embryo is just going to be thrown away, then why would the people throwing it away care if it were used. Remember, an embryo does not have even the most remote form of a brain or a heart.

3. If the argument is about whether or not the embryo has a soul, I cannot help. I do not believe that a random grouping of cells has a soul. I do not even necessarily believe in souls.

4. In this article, it says that the most common argument against stem cells is the belief in man not manipulating human life. I cannot say whether or not this is actually the big argument, but for those people who do believe that i will ask, “Have you been vaccinated? Have you ever taken any medicine for an illness? Is this not manipulating life?”. If one believes that Man should not be allowed to manipulate life, then they should also believe that medicines and known cures should not be used. if a person gets pneumonia, should the doctors just let them die because they don’t believe in manipulating life? Isn’t that murder?

As for manipulating the embryo, I can only repeat that I do not personally believe that a group of unspecialized cells should be treated as humans.

5. I do not believe that stem cell research should be used for cloning. As for “creating another you” in case you get diseases later in life, watch or read “My Sister’s Keeper”.

6. As for the ethics, there are generally five ethical approaches: utilitarian-whatever does the most good and the least harm, Rights-whatever considers the rights of everyone involved, Fairness of Justice-treats all equally and proportionally, Common good-the values of Confucianism or putting the group before the individual, and Virtue-what will make me more of the person i want to be? If using an organism that is displaying the characteristics of life, but that is not developed into a fetus will help others, I don’t see how it contradicts any of the ethical approaches.

6. If I decidedly believed in God, I would say, “God made us. I believe he made us for a reason. He gave us prayer and life. He also gave us doctors and medicine. we should use them”.

7. For those who say “if your loved one was dying, then your view would change” you are correct. Their view would change, but do we really want a society where people make official decisions based on the health status of their loved ones, when they are stressed and not thinking clearly?

These are the things I have come up with. I didn’t mean to offend anyone with my statements, and if I did, I am sorry.

Yeah, they are not using a fetus. they are using an embryo, which there is a huge difference.

Number one, they are not using a fetus; which i agree is human. The embryos used for stem cell research are four to five days old and have no specialized tissues, no nervous system, or heart. Each embryo contains about one-hundred cells, the cells of which are still undifferentiated (meaning that the cell has not decided what it is going to be).

For those of you saying that we are playing god. Is not God’s greatest gift the gift of life? After IVF a woman has limited choices what to do with her leftover embryos. She may donate to another couple, donate to research, keep the embryos for maybe future implantation, or she may discard them.

Continue reading here:
What is Stem Cell Research? (with pictures) – wiseGEEK

Posted in Stem Cell Research | Comments Off on What is Stem Cell Research? (with pictures) – wiseGEEK

Adult Stem Cells – Therapies and Treatments

Posted: at 7:41 pm

This website provides scientific facts and concise information for those of us who are not scientists, researchers or medical professionals. You will learn answers toquestions like …”Who is benefitting from stem cell research and therapies today?” and “What types of stem cells are working?” In addition, basic questions such as”What is a stem cell?””Why do we need stem cell research?” are answered.

The video patient profiles featured on this site emphasize ADULT stem cell advances with the goal of informing and the hope of inspiring you to take action. These real-life stories represent a small sampling of people and the many diseases and conditions now being helped by adult stem cells naturally found in the human body. Stem Cell Research Facts illustrates how current adult treatments and therapies directly impact the lives of patients and their families today – as opposed to debating themerits of other types of stem cell research.

We invite you to discover, learn and share the incredible possibilites of stem cell research. We welcome your feedback and encourage you to return for the latest developments in the world of stem cell research. Thank you!

Read more:
Adult Stem Cells – Therapies and Treatments

Posted in Stem Cell Research | Comments Off on Adult Stem Cells – Therapies and Treatments

Stem-cell therapy – Wikipedia

Posted: at 7:41 pm

This article is about the medical therapy. For the cell type, see Stem cell.

Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition.

Bone marrow transplant is the most widely used stem-cell therapy, but some therapies derived from umbilical cord blood are also in use. Research is underway to develop various sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes, heart disease, and other conditions.

Stem-cell therapy has become controversial following developments such as the ability of scientists to isolate and culture embryonic stem cells, to create stem cells using somatic cell nuclear transfer and their use of techniques to create induced pluripotent stem cells. This controversy is often related to abortion politics and to human cloning. Additionally, efforts to market treatments based on transplant of stored umbilical cord blood have been controversial.

For over 30 years, bone marrow has been used to treat cancer patients with conditions such as leukaemia and lymphoma; this is the only form of stem-cell therapy that is widely practiced.[1][2][3] During chemotherapy, most growing cells are killed by the cytotoxic agents. These agents, however, cannot discriminate between the leukaemia or neoplastic cells, and the hematopoietic stem cells within the bone marrow. It is this side effect of conventional chemotherapy strategies that the stem-cell transplant attempts to reverse; a donor’s healthy bone marrow reintroduces functional stem cells to replace the cells lost in the host’s body during treatment. The transplanted cells also generate an immune response that helps to kill off the cancer cells; this process can go too far, however, leading to graft vs host disease, the most serious side effect of this treatment.[4]

The paracrine soluble factors produced by stem cells, known as the stem cell secretome, has been found to be the predominant mechanism by which stem cell-based therapies mediate their effects in degenerative, auto-immune and/or inflammatory diseases.[5] The stem cell secretome therefore is being researched and applied for medical use itself as a cell-free medicinal product.

Another stem-cell therapy called Prochymal, was conditionally approved in Canada in 2012 for the management of acute graft-vs-host disease in children who are unresponsive to steroids.[6] It is an allogenic stem therapy based on mesenchymal stem cells (MSCs) derived from the bone marrow of adult donors. MSCs are purified from the marrow, cultured and packaged, with up to 10,000 doses derived from a single donor. The doses are stored frozen until needed.[7]

The FDA has approved five hematopoietic stem-cell products derived from umbilical cord blood, for the treatment of blood and immunological diseases.[8]

In 2014, the European Medicines Agency recommended approval of Holoclar, a treatment involving stem cells, for use in the European Union. Holoclar is used for people with severe limbal stem cell deficiency due to burns in the eye.[9]

Stem cells are being studied for a number of reasons. The molecules and exosomes released from stem cells are also being studied in an effort to make medications.[10]

Research has been conducted on the effects of stem cells on animal models of brain degeneration, such as in Parkinson’s, Amyotrophic lateral sclerosis, and Alzheimer’s disease.[11][12][13] There have been preliminary studies related to multiple sclerosis.[14][15]

Healthy adult brains contain neural stem cells which divide to maintain general stem-cell numbers, or become progenitor cells. In healthy adult laboratory animals, progenitor cells migrate within the brain and function primarily to maintain neuron populations for olfaction (the sense of smell). Pharmacological activation of endogenous neural stem cells has been reported to induce neuroprotection and behavioral recovery in adult rat models of neurological disorder.[16][17][18]

Stroke and traumatic brain injury lead to cell death, characterized by a loss of neurons and oligodendrocytes within the brain. A small clinical trial was underway in Scotland in 2013, in which stem cells were injected into the brains of stroke patients.[19]

Clinical and animal studies have been conducted into the use of stem cells in cases of spinal cord injury.[20][21][22]

The pioneering work[23] by Bodo-Eckehard Strauer has now been discredited by the identification of hundreds of factual contradictions.[24] Among several clinical trials that have reported that adult stem-cell therapy is safe and effective, powerful effects have been reported from only a few laboratories, but this has covered old[25] and recent[26] infarcts as well as heart failure not arising from myocardial infarction.[27] While initial animal studies demonstrated remarkable therapeutic effects,[28][29] later clinical trials achieved only modest, though statistically significant, improvements.[30][31] Possible reasons for this discrepancy are patient age,[32] timing of treatment[33] and the recent occurrence of a myocardial infarction.[34] It appears that these obstacles may be overcome by additional treatments which increase the effectiveness of the treatment[35] or by optimizing the methodology although these too can be controversial. Current studies vary greatly in cell-procuring techniques, cell types, cell-administration timing and procedures, and studied parameters, making it very difficult to make comparisons. Comparative studies are therefore currently needed.

Stem-cell therapy for treatment of myocardial infarction usually makes use of autologous bone-marrow stem cells (a specific type or all), however other types of adult stem cells may be used, such as adipose-derived stem cells.[36] Adult stem cell therapy for treating heart disease was commercially available in at least five continents as of 2007.[citation needed]

Possible mechanisms of recovery include:[11]

It may be possible to have adult bone-marrow cells differentiate into heart muscle cells.[11]

The first successful integration of human embryonic stem cell derived cardiomyocytes in guinea pigs (mouse hearts beat too fast) was reported in August 2012. The contraction strength was measured four weeks after the guinea pigs underwent simulated heart attacks and cell treatment. The cells contracted synchronously with the existing cells, but it is unknown if the positive results were produced mainly from paracrine as opposed to direct electromechanical effects from the human cells. Future work will focus on how to get the cells to engraft more strongly around the scar tissue. Whether treatments from embryonic or adult bone marrow stem cells will prove more effective remains to be seen.[37]

In 2013 the pioneering reports of powerful beneficial effects of autologous bone marrow stem cells on ventricular function were found to contain “hundreds” of discrepancies.[38] Critics report that of 48 reports there seemed to be just five underlying trials, and that in many cases whether they were randomized or merely observational accepter-versus-rejecter, was contradictory between reports of the same trial. One pair of reports of identical baseline characteristics and final results, was presented in two publications as, respectively, a 578 patient randomized trial and as a 391 patient observational study. Other reports required (impossible) negative standard deviations in subsets of patients, or contained fractional patients, negative NYHA classes. Overall there were many more patients published as having receiving stem cells in trials, than the number of stem cells processed in the hospital’s laboratory during that time. A university investigation, closed in 2012 without reporting, was reopened in July 2013.[39]

One of the most promising benefits of stem cell therapy is the potential for cardiac tissue regeneration to reverse the tissue loss underlying the development of heart failure after cardiac injury.[40]

Initially, the observed improvements were attributed to a transdifferentiation of BM-MSCs into cardiomyocyte-like cells.[28] Given the apparent inadequacy of unmodified stem cells for heart tissue regeneration, a more promising modern technique involves treating these cells to create cardiac progenitor cells before implantation to the injured area.[41]

The specificity of the human immune-cell repertoire is what allows the human body to defend itself from rapidly adapting antigens. However, the immune system is vulnerable to degradation upon the pathogenesis of disease, and because of the critical role that it plays in overall defense, its degradation is often fatal to the organism as a whole. Diseases of hematopoietic cells are diagnosed and classified via a subspecialty of pathology known as hematopathology. The specificity of the immune cells is what allows recognition of foreign antigens, causing further challenges in the treatment of immune disease. Identical matches between donor and recipient must be made for successful transplantation treatments, but matches are uncommon, even between first-degree relatives. Research using both hematopoietic adult stem cells and embryonic stem cells has provided insight into the possible mechanisms and methods of treatment for many of these ailments.[citation needed]

Fully mature human red blood cells may be generated ex vivo by hematopoietic stem cells (HSCs), which are precursors of red blood cells. In this process, HSCs are grown together with stromal cells, creating an environment that mimics the conditions of bone marrow, the natural site of red-blood-cell growth. Erythropoietin, a growth factor, is added, coaxing the stem cells to complete terminal differentiation into red blood cells.[42] Further research into this technique should have potential benefits to gene therapy, blood transfusion, and topical medicine.

In 2004, scientists at King’s College London discovered a way to cultivate a complete tooth in mice[43] and were able to grow bioengineered teeth stand-alone in the laboratory. Researchers are confident that the tooth regeneration technology can be used to grow live teeth in human patients.

In theory, stem cells taken from the patient could be coaxed in the lab turning into a tooth bud which, when implanted in the gums, will give rise to a new tooth, and would be expected to be grown in a time over three weeks.[44] It will fuse with the jawbone and release chemicals that encourage nerves and blood vessels to connect with it. The process is similar to what happens when humans grow their original adult teeth. Many challenges remain, however, before stem cells could be a choice for the replacement of missing teeth in the future.[45][46]

Heller has reported success in re-growing cochlea hair cells with the use of embryonic stem cells.[47]

Since 2003, researchers have successfully transplanted corneal stem cells into damaged eyes to restore vision. “Sheets of retinal cells used by the team are harvested from aborted fetuses, which some people find objectionable.” When these sheets are transplanted over the damaged cornea, the stem cells stimulate renewed repair, eventually restore vision.[48] The latest such development was in June 2005, when researchers at the Queen Victoria Hospital of Sussex, England were able to restore the sight of forty patients using the same technique. The group, led by Sheraz Daya, was able to successfully use adult stem cells obtained from the patient, a relative, or even a cadaver. Further rounds of trials are ongoing.[49]

Diabetes patients lose the function of insulin-producing beta cells within the pancreas.[50] In recent experiments, scientists have been able to coax embryonic stem cell to turn into beta cells in the lab. In theory if the beta cell is transplanted successfully, they will be able to replace malfunctioning ones in a diabetic patient.[51]

Clinical case reports in the treatment orthopaedic conditions have been reported. To date, the focus in the literature for musculoskeletal care appears to be on mesenchymal stem cells. Centeno et al. have published MRI evidence of increased cartilage and meniscus volume in individual human subjects.[52][unreliable medical source?][53] The results of trials that include a large number of subjects, are yet to be published. However, a published safety study conducted in a group of 227 patients over a 3-4-year period shows adequate safety and minimal complications associated with mesenchymal cell transplantation.[54]

Wakitani has also published a small case series of nine defects in five knees involving surgical transplantation of mesenchymal stem cells with coverage of the treated chondral defects.[55]

Stem cells can also be used to stimulate the growth of human tissues. In an adult, wounded tissue is most often replaced by scar tissue, which is characterized in the skin by disorganized collagen structure, loss of hair follicles and irregular vascular structure. In the case of wounded fetal tissue, however, wounded tissue is replaced with normal tissue through the activity of stem cells.[56] A possible method for tissue regeneration in adults is to place adult stem cell “seeds” inside a tissue bed “soil” in a wound bed and allow the stem cells to stimulate differentiation in the tissue bed cells. This method elicits a regenerative response more similar to fetal wound-healing than adult scar tissue formation.[56] Researchers are still investigating different aspects of the “soil” tissue that are conducive to regeneration.[56]

Culture of human embryonic stem cells in mitotically inactivated porcine ovarian fibroblasts (POF) causes differentiation into germ cells (precursor cells of oocytes and spermatozoa), as evidenced by gene expression analysis.[57]

Human embryonic stem cells have been stimulated to form Spermatozoon-like cells, yet still slightly damaged or malformed.[58] It could potentially treat azoospermia.

In 2012, oogonial stem cells were isolated from adult mouse and human ovaries and demonstrated to be capable of forming mature oocytes.[59] These cells have the potential to treat infertility.

Destruction of the immune system by the HIV is driven by the loss of CD4+ T cells in the peripheral blood and lymphoid tissues. Viral entry into CD4+ cells is mediated by the interaction with a cellular chemokine receptor, the most common of which are CCR5 and CXCR4. Because subsequent viral replication requires cellular gene expression processes, activated CD4+ cells are the primary targets of productive HIV infection.[60] Recently scientists have been investigating an alternative approach to treating HIV-1/AIDS, based on the creation of a disease-resistant immune system through transplantation of autologous, gene-modified (HIV-1-resistant) hematopoietic stem and progenitor cells (GM-HSPC).[61]

Stem cells are thought to mediate repair via five primary mechanisms: 1) providing an anti-inflammatory effect, 2) homing to damaged tissues and recruiting other cells, such as endothelial progenitor cells, that are necessary for tissue growth, 3) supporting tissue remodeling over scar formation, 4) inhibiting apoptosis, and 5) differentiating into bone, cartilage, tendon, and ligament tissue.[62][63]

To further enrich blood supply to the damaged areas, and consequently promote tissue regeneration, platelet-rich plasma could be used in conjunction with stem cell transplantation.[64][65] The efficacy of some stem cell populations may also be affected by the method of delivery; for instance, to regenerate bone, stem cells are often introduced in a scaffold where they produce the minerals necessary for generation of functional bone.[64][65][66][67]

Stem cells have also been shown to have a low immunogenicity due to the relatively low number of MHC molecules found on their surface. In addition, they have been found to secrete chemokines that alter the immune response and promote tolerance of the new tissue. This allows for allogeneic treatments to be performed without a high rejection risk.[68]

The ability to grow up functional adult tissues indefinitely in culture through Directed differentiation creates new opportunities for drug research. Researchers are able to grow up differentiated cell lines and then test new drugs on each cell type to examine possible interactions in vitro before performing in vivo studies. This is critical in the development of drugs for use in veterinary research because of the possibilities of species specific interactions. The hope is that having these cell lines available for research use will reduce the need for research animals used because effects on human tissue in vitro will provide insight not normally known before the animal testing phase.[69]

Stem cells are being explored for use in conservation efforts. Spermatogonial stem cells have been harvested from a rat and placed into a mouse host and fully mature sperm were produced with the ability to produce viable offspring. Currently research is underway to find suitable hosts for the introduction of donor spermatogonial stem cells. If this becomes a viable option for conservationists, sperm can be produced from high genetic quality individuals who die before reaching sexual maturity, preserving a line that would otherwise be lost.[70]

Most stem cells intended for regenerative therapy are generally isolated either from the patient’s bone marrow or from adipose tissue.[65][67] Mesenchymal stem cells can differentiate into the cells that make up bone, cartilage, tendons, and ligaments, as well as muscle, neural and other progenitor tissues, they have been the main type of stem cells studied in the treatment of diseases affecting these tissues.[71][72] The number of stem cells transplanted into damaged tissue may alter efficacy of treatment. Accordingly, stem cells derived from bone marrow aspirates, for instance, are cultured in specialized laboratories for expansion to millions of cells.[65][67] Although adipose-derived tissue also requires processing prior to use, the culturing methodology for adipose-derived stem cells is not as extensive as that for bone marrow-derived cells.[73][74] While it is thought that bone-marrow derived stem cells are preferred for bone, cartilage, ligament, and tendon repair, others believe that the less challenging collection techniques and the multi-cellular microenvironment already present in adipose-derived stem cell fractions make the latter the preferred source for autologous transplantation.[64]

New sources of mesenchymal stem cells are being researched, including stem cells present in the skin and dermis which are of interest because of the ease at which they can be harvested with minimal risk to the animal.[75] Hematopoetic stem cells have also been discovered to be travelling in the blood stream and possess equal differentiating ability as other mesenchymal stem cells, again with a very non-invasive harvesting technique.[76]

There is widespread controversy over the use of human embryonic stem cells. This controversy primarily targets the techniques used to derive new embryonic stem cell lines, which often requires the destruction of the blastocyst. Opposition to the use of human embryonic stem cells in research is often based on philosophical, moral, or religious objections.[77] There is other stem cell research that does not involve the destruction of a human embryo, and such research involves adult stem cells, amniotic stem cells, and induced pluripotent stem cells.

On 23 January 2009, the US Food and Drug Administration gave clearance to Geron Corporation for the initiation of the first clinical trial of an embryonic stem-cell-based therapy on humans. The trial aimed evaluate the drug GRNOPC1, embryonic stem cell-derived oligodendrocyte progenitor cells, on patients with acute spinal cord injury. The trial was discontinued in November 2011 so that the company could focus on therapies in the “current environment of capital scarcity and uncertain economic conditions”.[78] In 2013 biotechnology and regenerative medicine company BioTime (AMEX:BTX) acquired Geron’s stem cell assets in a stock transaction, with the aim of restarting the clinical trial.[79]

Scientists have reported that MSCs when transfused immediately within few hours post thawing may show reduced function or show decreased efficacy in treating diseases as compared to those MSCs which are in log phase of cell growth(fresh), so cryopreserved MSCs should be brought back into log phase of cell growth in invitro culture before these are administered for clinical trials or experimental therapies, re-culturing of MSCs will help in recovering from the shock the cells get during freezing and thawing. Various clinical trials on MSCs have failed which used cryopreserved product immediately post thaw as compared to those clinical trials which used fresh MSCs.[80]

Research has been conducted on horses, dogs, and cats can benefit the development of stem cell treatments in veterinary medicine and can target a wide range of injuries and diseases such as myocardial infarction, stroke, tendon and ligament damage, osteoarthritis, osteochondrosis and muscular dystrophy both in large animals, as well as humans.[81][82][83][84] While investigation of cell-based therapeutics generally reflects human medical needs, the high degree of frequency and severity of certain injuries in racehorses has put veterinary medicine at the forefront of this novel regenerative approach.[85] Companion animals can serve as clinically relevant models that closely mimic human disease.[86][87]

Veterinary applications of stem cell therapy as a means of tissue regeneration have been largely shaped by research that began with the use of adult-derived mesenchymal stem cells to treat animals with injuries or defects affecting bone, cartilage, ligaments and/or tendons.[88][71][89] There are two main categories of stem cells used for treatments: allogeneic stem cells derived from a genetically different donor within the same species[67][90] and autologous mesenchymal stem cells, derived from the patient prior to use in various treatments.[64] A third category, xenogenic stem cells, or stem cells derived from different species, are used primarily for research purposes, especially for human treatments.[69]

Bone has a unique and well documented natural healing process that normally is sufficient to repair fractures and other common injuries. Misaligned breaks due to severe trauma, as well as things like tumor resections of bone cancer, are prone to improper healing if left to the natural process alone. Scaffolds composed of natural and artificial components are seeded with mesenchymal stem cells and placed in the defect. Within four weeks of placing the scaffold, newly formed bone begins to integrate with the old bone and within 32 weeks, full union is achieved.[91] Further studies are necessary to fully characterize the use of cell-based therapeutics for treatment of bone fractures.

Stem cells have been used to treat degenerative bone diseases. The normally recommended treatment for dogs that have LeggCalvePerthes disease is to remove the head of the femur after the degeneration has progressed. Recently, mesenchymal stem cells have been injected directly in to the head of the femur, with success not only in bone regeneration, but also in pain reduction.[91]

Because of the general positive healing capabilities of stem cells, they have gained interest for the treatment of cutaneous wounds. This is important interest for those with reduced healing capabilities, like diabetics and those undergoing chemotherapy. In one trial, stem cells were isolated from the Wharton’s jelly of the umbilical cord. These cells were injected directly into the wounds. Within a week, full re-epithelialization of the wounds had occurred, compared to minor re-epithelialization in the control wounds. This showed the capabilities of mesenchymal stem cells in the repair of epidermal tissues.[92]

Soft-palate defects in horses are caused by a failure of the embryo to fully close at the midline during embryogenesis. These are often not found until after they have become worse because of the difficulty in visualizing the entire soft palate. This lack of visualization is thought to also contribute to the low success rate in surgical intervention to repair the defect. As a result, the horse often has to be euthanized. Recently, the use of mesenchymal stem cells has been added to the conventional treatments. After the surgeon has sutured the palate closed, autologous mesenchymal cells are injected into the soft palate. The stem cells were found to be integrated into the healing tissue especially along the border with the old tissue. There was also a large reduction in the number of inflammatory cells present, which is thought to aid in the healing process.[93]

Autologous stem cell-based treatments for ligament injury, tendon injury, osteoarthritis, osteochondrosis, and sub-chondral bone cysts have been commercially available to practicing veterinarians to treat horses since 2003 in the United States and since 2006 in the United Kingdom. Autologous stem cell based treatments for tendon injury, ligament injury, and osteoarthritis in dogs have been available to veterinarians in the United States since 2005. Over 3000 privately owned horses and dogs have been treated with autologous adipose-derived stem cells. The efficacy of these treatments has been shown in double-blind clinical trials for dogs with osteoarthritis of the hip and elbow and horses with tendon damage.[94][95]

Race horses are especially prone to injuries of the tendon and ligaments. Conventional therapies are very unsuccessful in returning the horse to full functioning potential. Natural healing, guided by the conventional treatments, leads to the formation of fibrous scar tissue that reduces flexibility and full joint movement. Traditional treatments prevented a large number of horses from returning to full activity and also have a high incidence of re-injury due to the stiff nature of the scarred tendon. Introduction of both bone marrow and adipose derived stem cells, along with natural mechanical stimulus promoted the regeneration of tendon tissue. The natural movement promoted the alignment of the new fibers and tendocytes with the natural alignment found in uninjured tendons. Stem cell treatment not only allowed more horses to return to full duty and also greatly reduced the re-injury rate over a three-year period.[68]

The use of embryonic stem cells has also been applied to tendon repair. The embryonic stem cells were shown to have a better survival rate in the tendon as well as better migrating capabilities to reach all areas of damaged tendon. The overall repair quality was also higher, with better tendon architecture and collagen formed. There was also no tumor formation seen during the three-month experimental period. Long-term studies need to be carried out to examine the long-term efficacy and risks associated with the use of embryonic stem cells.[68] Similar results have been found in small animals.[68]

Osteoarthritis is the main cause of joint pain both in animals and humans. Horses and dogs are most frequently affected arthritis. Natural cartilage regeneration is very limited and no current drug therapies are curative, but rather look to reduce the symptoms associated with the degeneration. Different types of mesenchymal stem cells and other additives are still being researched to find the best type of cell and method for long-term treatment.[68]

Adipose-derived mesenchymal cells are currently the most often used because of the non-invasive harvesting. There has been a lot of success recently injecting mesenchymal stem cells directly into the joint. This is a recently developed, non-invasive technique developed for easier clinical use. Dogs receiving this treatment showed greater flexibility in their joints and less pain.[96]

Stem cells have successfully been used to ameliorate healing in the heart after myocardial infarction in dogs. Adipose and bone marrow derived stem cells were removed and induced to a cardiac cell fate before being injected into the heart. The heart was found to have improved contractility and a reduction in the damaged area four weeks after the stem cells were applied.[97]

A different trial is underway for a patch made of a porous substance onto which the stem cells are “seeded” in order to induce tissue regeneration in heart defects. Tissue was regenerated and the patch was well incorporated into the heart tissue. This is thought to be due, in part, to improved angiogenesis and reduction of inflammation. Although cardiomyocytes were produced from the mesenchymal stem cells, they did not appear to be contractile. Other treatments that induced a cardiac fate in the cells before transplanting had greater success at creating contractile heart tissue.[98]

Spinal cord injuries are one of the most common traumas brought into veterinary hospitals.[91] Spinal injuries occur in two ways after the trauma: the primary mechanical damage, and in secondary processes, like inflammation and scar formation, in the days following the trauma. These cells involved in the secondary damage response secrete factors that promote scar formation and inhibit cellular regeneration. Mesenchymal stem cells that are induced to a neural cell fate are loaded onto a porous scaffold and are then implanted at the site of injury. The cells and scaffold secrete factors that counteract those secreted by scar forming cells and promote neural regeneration. Eight weeks later, dogs treated with stem cells showed immense improvement over those treated with conventional therapies. Dogs treated with stem cells were able to occasionally support their own weight, which has not been seen in dogs undergoing conventional therapies.[99][100][101]

Treatments are also in clinical trials to repair and regenerate peripheral nerves. Peripheral nerves are more likely to be damaged, but the effects of the damage are not as widespread as seen in injuries to the spinal cord. Treatments are currently in clinical trials to repair severed nerves, with early success. Stem cells induced to a neural fate injected in to a severed nerve. Within four weeks, regeneration of previously damaged stem cells and completely formed nerve bundles were observed.[75]

Stem cells are also in clinical phases for treatment in ophthalmology. Hematopoietic stem cells have been used to treat corneal ulcers of different origin of several horses. These ulcers were resistant to conventional treatments available, but quickly responded positively to the stem cell treatment. Stem cells were also able to restore sight in one eye of a horse with retinal detachment, allowing the horse to return to daily activities.[76]

Pre-clinical models of Sjgrens syndrome[102][103] have culminated in allogeneic MSCs implanted around the lacrimal glands in KSC dogs that were refractory to current therapy. Significantly improved scores in ocular discharge, conjunctival hyperaemia, corneal changes and Schirmer tear tests (STT) were seen.[104]

Stem-cell research and treatment was practiced in the People’s Republic of China. The Ministry of Health of the People’s Republic of China has permitted the use of stem-cell therapy for conditions beyond those approved of in Western countries. The Western World has scrutinized China for its failed attempts to meet international documentation standards of these trials and procedures.[105]

In 2005, South Korean scientists claimed to have generated stem cells that were tailored to match the recipient. Each of the 11 new stem cell lines was developed using somatic cell nuclear transfer (SCNT) technology. The resultant cells were thought to match the genetic material of the recipient, thus suggesting minimal to no cell rejection.[106]

As of 2013, Thailand still considers Hematopoietic stem cell transplants as experimental. Kampon Sriwatanakul began with a clinical trial in October 2013 with 20 patients. 10 are going to receive stem-cell therapy for Type-2 diabetes and the other 10 will receive stem-cell therapy for emphysema. Chotinantakul’s research is on Hematopoietic cells and their role for the hematopoietic system function in homeostasis and immune response.[107]

Go here to read the rest:
Stem-cell therapy – Wikipedia

Posted in Stem Cell Research | Comments Off on Stem-cell therapy – Wikipedia

Stem Cell Basics I. | stemcells.nih.gov

Posted: December 15, 2017 at 4:43 pm

Stem cells have the remarkable potential to develop into many different cell types in the body during early life and growth. In addition, in many tissues they serve as a sort of internal repair system, dividing essentially without limit to replenish other cells as long as the person or animal is still alive. When a stem cell divides, each new cell has the potential either to remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

Stem cells are distinguished from other cell types by two important characteristics. First, they are unspecialized cells capable of renewing themselves through cell division, sometimes after long periods of inactivity. Second, under certain physiologic or experimental conditions, they can be induced to become tissue- or organ-specific cells with special functions. In some organs, such as the gut and bone marrow, stem cells regularly divide to repair and replace worn out or damaged tissues. In other organs, however, such as the pancreas and the heart, stem cells only divide under special conditions.

Until recently, scientists primarily worked with two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic “somatic” or “adult” stem cells. The functions and characteristics of these cells will be explained in this document. Scientists discovered ways to derive embryonic stem cells from early mouse embryos more than 30 years ago, in 1981. The detailed study of the biology of mouse stem cells led to the discovery, in 1998, of a method to derive stem cells from human embryos and grow the cells in the laboratory. These cells are called human embryonic stem cells. The embryos used in these studies were created for reproductive purposes through in vitro fertilization procedures. When they were no longer needed for that purpose, they were donated for research with the informed consent of the donor. In 2006, researchers made another breakthrough by identifying conditions that would allow some specialized adult cells to be “reprogrammed” genetically to assume a stem cell-like state. This new type of stem cell, called induced pluripotent stem cells (iPSCs), will be discussed in a later section of this document.

Stem cells are important for living organisms for many reasons. In the 3- to 5-day-old embryo, called a blastocyst, the inner cells give rise to the entire body of the organism, including all of the many specialized cell types and organs such as the heart, lungs, skin, sperm, eggs and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.

Given their unique regenerative abilities, stem cells offer new potentials for treating diseases such as diabetes, and heart disease. However, much work remains to be done in the laboratory and the clinic to understand how to use these cells for cell-based therapies to treat disease, which is also referred to as regenerative or reparative medicine.

Laboratory studies of stem cells enable scientists to learn about the cells essential properties and what makes them different from specialized cell types. Scientists are already using stem cells in the laboratory to screen new drugs and to develop model systems to study normal growth and identify the causes of birth defects.

Research on stem cells continues to advance knowledge about how an organism develops from a single cell and how healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of contemporary biology, but, as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates new discoveries.

I.Introduction|Next

Read the original here:
Stem Cell Basics I. | stemcells.nih.gov

Posted in Stem Cell Research | Comments Off on Stem Cell Basics I. | stemcells.nih.gov

Stem cell controversy – Wikipedia

Posted: December 11, 2017 at 12:45 pm

The stem cell controversy is the consideration of the ethics of research involving the development, use, and destruction of human embryos. Most commonly, this controversy focuses on embryonic stem cells. Not all stem cell research involves the human embryos. For example, adult stem cells, amniotic stem cells, and induced pluripotent stem cells do not involve creating, using, or destroying human embryos, and thus are minimally, if at all, controversial. Many less controversial sources of acquiring stem cells include using cells from the umbilical cord, breast milk, and bone marrow, which are not pluripotent.

For many decades, stem cells have played an important role in medical research, beginning in 1868 when Ernst Haeckel first used the phrase to describe the fertilized egg which eventually gestates into an organism. The term was later used in 1886 by William Sedgwick to describe the parts of a plant that grow and regenerate. Further work by Alexander Maximow and Leroy Stevens introduced the concept that stem cells are pluripotent. This significant discovery led to the first human bone marrow transplant by E. Donnal Thomas in 1968, which although successful in saving lives, has generated much controversy since. This has included the many complications inherent in stem cell transplantation (almost 200 allogeneic marrow transplants were performed in humans, with no long-term successes before the first successful treatment was made), through to more modern problems, such as how many cells are sufficient for engraftment of various types of hematopoietic stem cell transplants, whether older patients should undergo transplant therapy, and the role of irradiation-based therapies in preparation for transplantation.

The discovery of adult stem cells led scientists to develop an interest in the role of embryonic stem cells, and in separate studies in 1981 Gail Martin and Martin Evans derived pluripotent stem cells from the embryos of mice for the first time. This paved the way for Mario Capecchi, Martin Evans, and Oliver Smithies to create the first knockout mouse, ushering in a whole new era of research on human disease.

In 1998, James Thomson and Jeffrey Jones derived the first human embryonic stem cells, with even greater potential for drug discovery and therapeutic transplantation. However, the use of the technique on human embryos led to more widespread controversy as criticism of the technique now began from the wider non-scientific public who debated the moral ethics of questions concerning research involving human embryonic cells.

Since pluripotent stem cells have the ability to differentiate into any type of cell, they are used in the development of medical treatments for a wide range of conditions. Treatments that have been proposed include treatment for physical trauma, degenerative conditions, and genetic diseases (in combination with gene therapy). Yet further treatments using stem cells could potentially be developed due to their ability to repair extensive tissue damage.[1]

Great levels of success and potential have been realized from research using adult stem cells. In early 2009, the FDA approved the first human clinical trials using embryonic stem cells. Only cells from an embryo at the morula stage or earlier are truly totipotent, meaning that they are able to form all cell types including placental cells. Adult stem cells are generally limited to differentiating into different cell types of their tissue of origin. However, some evidence suggests that adult stem cell plasticity may exist, increasing the number of cell types a given adult stem cell can become.

Many of the debates surrounding human embryonic stem cells concern issues such as what restrictions should be made on studies using these types of cells. At what point does one consider life to begin? Is it just to destroy an embryo cell if it has the potential to cure countless numbers of patients? Political leaders are debating how to regulate and fund research studies that involve the techniques used to remove the embryo cells. No clear consensus has emerged. Other recent discoveries may extinguish the need for embryonic stem cells.[2]

Much of the criticism has been a result of religious beliefs, and in the most high-profile case, US President George W Bush signed an executive order banning the use of federal funding for any cell lines other than those already in existence, stating at the time, “My position on these issues is shaped by deeply held beliefs,” and “I also believe human life is a sacred gift from our creator.”[3] This ban was in part revoked by his successor Barack Obama, who stated “As a person of faith, I believe we are called to care for each other and work to ease human suffering. I believe we have been given the capacity and will to pursue this research and the humanity and conscience to do so responsibly.” [4]

Some stem cell researchers are working to develop techniques of isolating stem cells that are as potent as embryonic stem cells, but do not require a human embryo.

Foremost among these was the discovery in August 2006 that adult cells can be reprogrammed into a pluripotent state by the introduction of four specific transcription factors, resulting in induced pluripotent stem cells.[5] This major breakthrough won a Nobel Prize for the discoverers, Shinya Yamanaka and John Gurdon.[6]

In an alternative technique, researchers at Harvard University, led by Kevin Eggan and Savitri Marajh, have transferred the nucleus of a somatic cell into an existing embryonic stem cell, thus creating a new stem cell line.[7]

Researchers at Advanced Cell Technology, led by Robert Lanza and Travis Wahl, reported the successful derivation of a stem cell line using a process similar to preimplantation genetic diagnosis, in which a single blastomere is extracted from a blastocyst.[8] At the 2007 meeting of the International Society for Stem Cell Research (ISSCR),[9] Lanza announced that his team had succeeded in producing three new stem cell lines without destroying the parent embryos. “These are the first human embryonic cell lines in existence that didn’t result from the destruction of an embryo.” Lanza is currently in discussions with the National Institutes of Health to determine whether the new technique sidesteps U.S. restrictions on federal funding for ES cell research.[10]

Anthony Atala of Wake Forest University says that the fluid surrounding the fetus has been found to contain stem cells that, when used correctly, “can be differentiated towards cell types such as fat, bone, muscle, blood vessel, nerve and liver cells”. The extraction of this fluid is not thought to harm the fetus in any way. He hopes “that these cells will provide a valuable resource for tissue repair and for engineered organs, as well”.[11]

Stem cell debates have motivated and reinvigorated the pro-life movement, whose members are concerned with the rights and status of the embryo as an early-aged human life. They believe that embryonic stem cell research profits from and violates the sanctity of life and is tantamount to murder.[12] The fundamental assertion of those who oppose embryonic stem cell research is the belief that human life is inviolable, combined with the belief that human life begins when a sperm cell fertilizes an egg cell to form a single cell. The view of those in favor is that these embryos would otherwise be discarded, and if used as stem cells, they can survive as a part of a living human being.

A portion of stem cell researchers use embryos that were created but not used in in vitro fertility treatments to derive new stem cell lines. Most of these embryos are to be destroyed, or stored for long periods of time, long past their viable storage life. In the United States alone, an estimated at least 400,000 such embryos exist.[13] This has led some opponents of abortion, such as Senator Orrin Hatch, to support human embryonic stem cell research.[14] See also embryo donation.

Medical researchers widely report that stem cell research has the potential to dramatically alter approaches to understanding and treating diseases, and to alleviate suffering. In the future, most medical researchers anticipate being able to use technologies derived from stem cell research to treat a variety of diseases and impairments. Spinal cord injuries and Parkinson’s disease are two examples that have been championed by high-profile media personalities (for instance, Christopher Reeve and Michael J. Fox, who have lived with these conditions, respectively). The anticipated medical benefits of stem cell research add urgency to the debates, which has been appealed to by proponents of embryonic stem cell research.

In August 2000, The U.S. National Institutes of Health’s Guidelines stated:

…research involving human pluripotent stem cells…promises new treatments and possible cures for many debilitating diseases and injuries, including Parkinson’s disease, diabetes, heart disease, multiple sclerosis, burns and spinal cord injuries. The NIH believes the potential medical benefits of human pluripotent stem cell technology are compelling and worthy of pursuit in accordance with appropriate ethical standards.[15]

In 2006, researchers at Advanced Cell Technology of Worcester, Massachusetts, succeeded in obtaining stem cells from mouse embryos without destroying the embryos.[16] If this technique and its reliability are improved, it would alleviate some of the ethical concerns related to embryonic stem cell research.

Another technique announced in 2007 may also defuse the longstanding debate and controversy. Research teams in the United States and Japan have developed a simple and cost-effective method of reprogramming human skin cells to function much like embryonic stem cells by introducing artificial viruses. While extracting and cloning stem cells is complex and extremely expensive, the newly discovered method of reprogramming cells is much cheaper. However, the technique may disrupt the DNA in the new stem cells, resulting in damaged and cancerous tissue. More research will be required before noncancerous stem cells can be created.[17][18][19][20]

Update article to include 2009/2010 current stem cell usages in clinical trials.[21][22] The planned treatment trials will focus on the effects of oral lithium on neurological function in people with chronic spinal cord injury and those who have received umbilical cord blood mononuclear cell transplants to the spinal cord. The interest in these two treatments derives from recent reports indicating that umbilical cord blood stem cells may be beneficial for spinal cord injury and that lithium may promote regeneration and recovery of function after spinal cord injury. Both lithium and umbilical cord blood are widely available therapies that have long been used to treat diseases in humans.

This argument often goes hand-in-hand with the utilitarian argument, and can be presented in several forms:

This is usually presented as a counter-argument to using adult stem cells as an alternative that does not involve embryonic destruction.

This argument is used by opponents of embryonic destruction, as well as researchers specializing in adult stem cell research.

Pro-life supporters often claim that the use of adult stem cells from sources such as the umbilical cord blood has consistently produced more promising results than the use of embryonic stem cells.[30] Furthermore, adult stem cell research may be able to make greater advances if less money and resources were channeled into embryonic stem cell research.[31] Stem cell research is highly frowned upon in many ethnic and religious groups.

In the past, it has been a necessity to research embryonic stem cells and in doing so destroy them for research to progress.[32] As a result of the research done with both embryonic and adult stem cells, new techniques may make the necessity for embryonic cell research obsolete. Because many of the restrictions placed on stem cell research have been based on moral dilemmas surrounding the use of embryonic cells, there will likely be rapid advancement in the field as the techniques that created those issues are becoming less of a necessity.[33] Many funding and research restrictions on embryonic cell research will not impact research on IPSCs (induced pluripotent stem cells) allowing for a promising portion of the field of research to continue relatively unhindered by the ethical issues of embryonic research.[34]

Adult stem cells have provided many different therapies for illnesses such as Parkinson’s disease, leukemia, multiple sclerosis, lupus, sickle-cell anemia, and heart damage[35] (to date, embryonic stem cells have also been used in treatment),[36] Moreover, there have been many advances in adult stem cell research, including a recent study where pluripotent adult stem cells were manufactured from differentiated fibroblast by the addition of specific transcription factors.[37] Newly created stem cells were developed into an embryo and were integrated into newborn mouse tissues, analogous to the properties of embryonic stem cells.

Austria, Denmark, France, Germany, Portugal and Ireland do not allow the production of embryonic stem cell lines,[38] but the creation of embryonic stem cell lines is permitted in Finland, Greece, the Netherlands, Sweden, and the United Kingdom.[38]

In 1973, Roe v. Wade legalized abortion in the United States. Five years later, the first successful human in vitro fertilization resulted in the birth of Louise Brown in England. These developments prompted the federal government to create regulations barring the use of federal funds for research that experimented on human embryos. In 1995, the NIH Human Embryo Research Panel advised the administration of President Bill Clinton to permit federal funding for research on embryos left over from in vitro fertility treatments and also recommended federal funding of research on embryos specifically created for experimentation. In response to the panel’s recommendations, the Clinton administration, citing moral and ethical concerns, declined to fund research on embryos created solely for research purposes,[39] but did agree to fund research on leftover embryos created by in vitro fertility treatments. At this point, the Congress intervened and passed the Dickey Amendment in 1995 (the final bill, which included the Dickey Amendment, was signed into law by Bill Clinton) which prohibited any federal funding for the Department of Health and Human Services be used for research that resulted in the destruction of an embryo regardless of the source of that embryo.

In 1998, privately funded research led to the breakthrough discovery of human embryonic stem cells (hESC).[40] This prompted the Clinton administration to re-examine guidelines for federal funding of embryonic research. In 1999, the president’s National Bioethics Advisory Commission recommended that hESC harvested from embryos discarded after in vitro fertility treatments, but not from embryos created expressly for experimentation, be eligible for federal funding. Though embryo destruction had been inevitable in the process of harvesting hESC in the past (this is no longer the case[41][42][43][44]), the Clinton administration had decided that it would be permissible under the Dickey Amendment to fund hESC research as long as such research did not itself directly cause the destruction of an embryo. Therefore, HHS issued its proposed regulation concerning hESC funding in 2001. Enactment of the new guidelines was delayed by the incoming George W. Bush administration which decided to reconsider the issue.

President Bush announced, on August 9, 2001, that federal funds, for the first time, would be made available for hESC research on currently existing embryonic stem cell lines. President Bush authorized research on existing human embryonic stem cell lines, not on human embryos under a specific, unrealistic timeline in which the stem cell lines must have been developed. However, the Bush Administration chose not to permit taxpayer funding for research on hESC cell lines not currently in existence, thus limiting federal funding to research in which “the life-and-death decision has already been made”.[45] The Bush Administration’s guidelines differ from the Clinton Administration guidelines which did not distinguish between currently existing and not-yet-existing hESC. Both the Bush and Clinton guidelines agree that the federal government should not fund hESC research that directly destroys embryos.

Neither Congress nor any administration has ever prohibited private funding of embryonic research. Public and private funding of research on adult and cord blood stem cells is unrestricted.

In April 2004, 206 members of Congress signed a letter urging President Bush to expand federal funding of embryonic stem cell research beyond what Bush had already supported.

In May 2005, the House of Representatives voted 238194 to loosen the limitations on federally funded embryonic stem-cell researchby allowing government-funded research on surplus frozen embryos from in vitro fertilization clinics to be used for stem cell research with the permission of donorsdespite Bush’s promise to veto the bill if passed.[46] On July 29, 2005, Senate Majority Leader William H. Frist (R-TN), announced that he too favored loosening restrictions on federal funding of embryonic stem cell research.[47] On July 18, 2006, the Senate passed three different bills concerning stem cell research. The Senate passed the first bill (the Stem Cell Research Enhancement Act) 6337, which would have made it legal for the federal government to spend federal money on embryonic stem cell research that uses embryos left over from in vitro fertilization procedures.[48] On July 19, 2006 President Bush vetoed this bill. The second bill makes it illegal to create, grow, and abort fetuses for research purposes. The third bill would encourage research that would isolate pluripotent, i.e., embryonic-like, stem cells without the destruction of human embryos.

In 2005 and 2007, Congressman Ron Paul introduced the Cures Can Be Found Act,[49] with 10 cosponsors. With an income tax credit, the bill favors research upon nonembryonic stem cells obtained from placentas, umbilical cord blood, amniotic fluid, humans after birth, or unborn human offspring who died of natural causes; the bill was referred to committee. Paul argued that hESC research is outside of federal jurisdiction either to ban or to subsidize.[50]

Bush vetoed another bill, the Stem Cell Research Enhancement Act of 2007,[51] which would have amended the Public Health Service Act to provide for human embryonic stem cell research. The bill passed the Senate on April 11 by a vote of 63-34, then passed the House on June 7 by a vote of 247176. President Bush vetoed the bill on July 19, 2007.[52]

On March 9, 2009, President Obama removed the restriction on federal funding for newer stem cell lines. [53] Two days after Obama removed the restriction, the president then signed the Omnibus Appropriations Act of 2009, which still contained the long-standing Dickey-Wicker provision which bans federal funding of “research in which a human embryo or embryos are destroyed, discarded, or knowingly subjected to risk of injury or death;”[54] the Congressional provision effectively prevents federal funding being used to create new stem cell lines by many of the known methods. So, while scientists might not be free to create new lines with federal funding, President Obama’s policy allows the potential of applying for such funding into research involving the hundreds of existing stem cell lines as well as any further lines created using private funds or state-level funding. The ability to apply for federal funding for stem cell lines created in the private sector is a significant expansion of options over the limits imposed by President Bush, who restricted funding to the 21 viable stem cell lines that were created before he announced his decision in 2001.[55] The ethical concerns raised during Clinton’s time in office continue to restrict hESC research and dozens of stem cell lines have been excluded from funding, now by judgment of an administrative office rather than presidential or legislative discretion.[56]

In 2005, the NIH funded $607 million worth of stem cell research, of which $39 million was specifically used for hESC.[57]Sigrid Fry-Revere has argued that private organizations, not the federal government, should provide funding for stem-cell research, so that shifts in public opinion and government policy would not bring valuable scientific research to a grinding halt.[58]

In 2005, the State of California took out $3 billion in bond loans to fund embryonic stem cell research in that state.[59]

China has one of the most permissive human embryonic stem cell policies in the world. In the absence of a public controversy, human embryo stem cell research is supported by policies that allow the use of human embryos and therapeutic cloning.[60]

According to Rabbi Levi Yitzchak Halperin of the Institute for Science and Jewish Law in Jerusalem, embryonic stem cell research is permitted so long as it has not been implanted in the womb. Not only is it permitted, but research is encouraged, rather than wasting it.

However in order to remove all doubt [as to the permissibility of destroying it], it is preferable not to destroy the pre-embryo unless it will otherwise not be implanted in the woman who gave the eggs (either because there are many fertilized eggs, or because one of the parties refuses to go on with the procedurethe husband or wifeor for any other reason). Certainly it should not be implanted into another woman…. The best and worthiest solution is to use it for life-saving purposes, such as for the treatment of people that suffered trauma to their nervous system, etc.

Similarly, the sole Jewish majority state, Israel, permits research on embryonic stem cells.

The Catholic Church opposes human embryonic stem cell research calling it “an absolutely unacceptable act.” The Church supports research that involves stem cells from adult tissues and the umbilical cord, as it “involves no harm to human beings at any state of development.”[61]

The Southern Baptist Convention opposes human embryonic stem cell research on the grounds that “Bible teaches that human beings are made in the image and likeness of God (Gen. 1:27; 9:6) and protectable human life begins at fertilization.”[62] However, it supports adult stem cell research as it does “not require the destruction of embryos.”[62]

The United Methodist Church opposes human embryonic stem cell research, saying, “a human embryo, even at its earliest stages, commands our reverence.”[63] However, it supports adult stem cell research, stating that there are “few moral questions” raised by this issue.[63]

The Assemblies of God opposes human embryonic stem cell research, saying, it “perpetuates the evil of abortion and should be prohibited.”[64]

The religion of Islam favors the stance that scientific research and development in terms of stem cell research is allowed as long as it benefits society while using the least amount of harm to the subjects. “Stem cell research is one of the most controversial topics of our time period and has raised many religious and ethical questions regarding the research being done. With there being no true guidelines set forth in the Qur’an against the study of biomedical testing, Muslims have adopted any new studies as long as the studies do not contradict another teaching in the Qur’an. One of the teachings of the Qur’an states that Whosoever saves the life of one, it shall be if he saves the life of humankind (5:32), it is this teaching that makes stem cell research acceptable in the Muslim faith because of its promise of potential medical breakthrough.”[65] This statement does not, however, make a distinction between adult, embryonic, etc stem-cells.

The First Presidency of The Church of Jesus Christ of Latter-day Saints “has not taken a position regarding the use of embryonic stem cells for research purposes. The absence of a position should not be interpreted as support for or opposition to any other statement made by Church members, whether they are for or against embryonic stem cell research.[66]

Read the original here:
Stem cell controversy – Wikipedia

Posted in Stem Cell Research | Comments Off on Stem cell controversy – Wikipedia

Myths and Misconceptions About Stem Cell Research …

Posted: December 8, 2017 at 1:46 am

En Espaol

There is no shortage of myths and misconceptions when it comes to stem cell research and regenerative medicine. Here we address the most common concerns.

If you have more questions that aren’t addressed here, please visit our other Stem Cell FAQ pages.

Is CIRM-funded stem cell research carried out ethically?Where do the embryos come from to create stem cell lines?I’m opposed to abortion. Can embryonic stem cell lines come from aborted fetuses?Does creating stem cell lines destroy the embryo?Are adult stem cells as goodor betterthan embryonic stem cells?Don’t iPS cells eliminate the need to use embryos in stem cell research?Can’t stem cell research lead to human cloning?

Stem cell research, like any fieldwithin biomedicine, poses social and ethical concerns. CIRM, as well as the broader research community, takes these seriously.

As a state funding body, CIRM has comprehensive policies to govern research, similar to our national counterpart, the National Institutes of Health. CIRM-funded researchers must comply with a comprehensive set of regulations that have been carefully developed and are in accordance with national and international standards.

These regulations were among the first formal policies governing the conduct of stem cell research and are in accordance with recommendations from the National Academies and from the International Society for Stem Cell Research. CIRMs Standards Working Group meets regularly to consider new ethical challenges as the science progresses and to revise standards to reflect the current state of the research.

Find out More:

CIRM regulationsNational Academies of Science guidelinesInternational Society for Stem Cell Research guidelinesNational Academies of Science podcast about guidelines for embryonic stem cell research More about CIRM-grantee ethics training (4:03)

All the human embryonic stem cell lines currently in use come from four to five day-old embryos left over from in vitro fertilization (IVF) procedures. In IVF, researchers mix a man’s sperm and a woman’s eggs together in a lab dish. Some of those eggs will become fertilized. At about five days the egg has divided to become a hollow ball of roughly 100 cells called a blastocyst which is smaller than the size of the dot over an i. It is these very early embryos that are implanted into the woman in the hopes that she becomes pregnant.

Each cycle of IVF can produce many blastocysts, some of which are implanted into the woman. The rest are stored in the IVF clinic freezer. After a successful implantation, they must decide what to do with any remaining embryos. There are a few options:

Some embryonic stem cell lines also come from embryos that a couple has chosen not to implant because they carry harmful genetic mutations like the ones that cause cystic fibrosis or Tay Sachs disease. These are discovered through routine genetic testing prior to implantation. Still other embryos might be malformed in some way that causes them to be rejected for implantation into the mother. Embryos with genetic defects of malformations would have been discarded if the couple had not chosen to donate them to stem cell research.

People who donate leftover embryos for research go through an extensive consent process to ensure that they understand embryonic stem cell research. Under state, national and international regulations, no human embryonic stem cell lines can be created without explicit consent from the donor.

Policies vary as to whether women may be paid or otherwise compensated to donate eggs. Most jurisdictions allow donors to be reimbursed for direct costs such as travel to the clinic or lodging. Some also allow payments or IVF services to be provided to egg donors.

Find out More:

How do scientists create stem cell lines from left over IVF embryos? (4:11)

No. Emybronic stem cells only come from four to five day old blastocysts or younger embryos.

In most cases, yes. The hollow blastocystwhich is where embryonic stem cells come fromcontains a cluster of 20-30 cells called the inner cell mass. These are the cells that become embryonic stem cells in a lab dish. The process of extracting these cells destroys the embryo.

Dont forget that the embryos were donated from IVF clinics. They had either been rejected for implantation and were going to be destroyed, or the couple had decided to stop storing the embryos for future use. The embryos used to create embryonic stem cell lines were already destined to be destroyed.

There is, however, a second method that creates embryonic stem cell lines without destroying the embryo. Instead, scientists take a single cell from a very early stage IVF embryo and can use that one cell to develop a new line. The process of removing one cell from an early stage embryo has been done for many years as a way of testing the embryo for genetic predisposition to diseases such as Tay Sachs. This process is called preimplantation genetic testing.

Adult stem cells are extremely valuable and have great potential for future therapies. However, these cells are very restricted in what they can do. Unlike embryonic stem cells, which can grow into virtually any cell type in the body, adult stem cells can only follow certain paths.

For example, Blood-forming stem cells can grow into mature blood cells, and brain stem cells may be able to grow into mature neurons, but a blood-forming stem cell cant grow into a neuron, and vice versa. Whats more, adult stem cells dont grow indefinitely in the lab, unlike embryonic stem cells, and they arent as flexible in the types of diseases they can treat.

And, while the news is full of stories about people who had great results from adult stem cell therapies, few of these therapies are part of big trials that can test whether a potential therapy is safe and effective. Until some of these large trials take place with both adult and embryonic stem cells we won’t know which type of stem cell is superior. Even researchers who study adult stem cells advocate working with embryonic cells as well.

CIRM is excited about their potential for treating some diseases. However, our goal is to accelerate new treatments for diseases in need. At this time the most effective way of doing that is by exploring all types of stem cells. That’s why CIRM has funded researchers pursuing a wide range of approaches to finding cures for diseases.

See how much of CIRM’s funding has gone to different types of stem cells here: Overview of CIRM Stem Cell Research Funding.

Filter our list of all funded CIRM grants to see awards using different cell types.

How are adult stem cell different from embryonic stem cells? (3:29)

Induced pluripotent stem cells, or iPS cells, represent another type of cell that could be used for stem cell research. . iPS cells are adult cellsusually skin cellsthat scientists genetically reprogram to appear like embryonic stem cells. The technology used to generate human iPS cells, pioneered by Shinya Yamanaka in 2007, is very promising, which is why CIRM has funded many grants that create and use these cells to study or treat disease. However, iPS cell technology is very new and scientists are looking into whether those cells have the same potential as human embryonic stem cells and whether the cells are safe for transplantation.Many CIRM-funded researchers are working to find better ways of creating iPS cells that are both safe and effective.

Experts agree that research on all types of stem cells is critical. In September 2008, a panel of experts convened by the U.S. National Academy of Sciences stated that the use of human embryonic stem cells is still necessary. As panel chair Richard Hynes of the Massachusetts Institute of Technology stated:

It is far from clear at this point which types of cell types will prove to be the most useful for regenerative medicine, and it is likely that each will have some utility.

See a video about creating iPS cells (3:40)

No. Every significant regulatory and advisory body has restrictions on reproductive cloning. The National Academy of Sciences has issued guidelines banning the technique as has the International Society for Stem Cell Research. The California constitution and CIRM regulations specifically prohibit reproductive cloning with its funding.

Updated 2/16

Originally posted here:
Myths and Misconceptions About Stem Cell Research …

Posted in Stem Cell Research | Comments Off on Myths and Misconceptions About Stem Cell Research …

Facts About Abortion: Stem Cell Research and Abortion

Posted: December 6, 2017 at 6:46 pm

Page Summary: Embryonic stem research cannot take place apart from dead human embryos. Embryonic stem cells cannot be culled without killing the embryo. Whether these tiny human beings are explicitly killed for research purposes or not, the ethics of the matter do not change.

The National Institutes of Health (NIH) tells us this about stem cells:

Because stem cells can differentiate into specialized cell types, they have the potential to replace or repair damaged tissue, be used for organ transplants and treat all sorts of diseases. Much research is left to be done, but the use of stem cells could potentially cure diabetes, Parkinson’s disease, spinal chord injuries, heart conditions, and more.

Before going further, it must be emphasized that there are different types of stem cells, which carry vastly different ethical implications. Until recently, researchers worked with two kinds of stem cells: embryonic stem cells (hESCs) and “somatic” or “adult” stem cells. Embryonic stem cells are the undifferentiated cells from which all our body parts, organs, tissues, etc. originally developed. These cells are obtained by transferring the inner cell mass of the embryo into a culture dish, but can only be done by killing the embryo. This is what makes embryonic stem cell research an ethical question. Adult stem cells are undifferentiated cells found in various tissues throughout the body, including the brain, bone marrow, umbilical cord blood, muscle, skin, teeth, etc., and are thought to maintain and repair damaged tissue. These can be obtained without harm to the donor.

In 2007, a new stem cell method was discovered that actually “reprograms” ordinary cells (like skin cells) to revert into an embryonic stem cell-like state. These stem cells are called Induced Pluripotent Stem Cells (iPSCs) and are essentially no different than embryonic stem cells, with one exception: they do not require the killing of embryos. The scientist who discovered this reprogramming technique, Dr. Shinya Yamanaka of Japan, said the following:

Dr. Yamanaka states that iPSCs overcome two main problems with embryonic stem cell research: (1) immune rejection: since the embryonic stem cells that would theoretically be introduced into patients do not carry the same genetic code, the body may reject them (as has been observed in studies on mice); and (2) the ethical dilemna: the only way to derive embryonic stem cells is to kill embryos. With the discovery of iPSCs, embryo-like stem cells can be derived from a patient’s own cells, which carry the same genes and will not be rejected by the body, and, more importantly, they do not require the killing of embryos.

Despite the ethical controversy surrounding embryonic stem cell research, and the scientific advances which allow for the ethical controversy to be avoided altogether, the U.S. government began providing federal funding for embryonic stem cell research in 2001. Prior to this, federal funds could not be used for embryonic stem cell research, but President Bush changed that when he adopted a policy that allowed government funding to be applied towards research on a limited number of embryonic stem cell lines. The statement that spelled out those limitations reads as follows:

President Bush tried to toe the moral line by ensuring that no new embryos would be created and destroyed for stem cell research. On March 9, 2009, President Obama issued a new executive order, revoking the former policy. Federal funding can now be used for embryonic stem cell research, without regard to creation date and without regard to the future life of the embryo. Dr. Curt Civin, who serves as the founding director of the University of Maryland Center for Stem Cell Biology and Regenerative Medicine defends the practice this way, “This was already life that was going to be destroyed, the choice is throw them away or use them for research.” Dr. Civin conveniently ignores a third option: embryo adoption. Frozen embryos need not be consigned to the trashcan or the microscope!

Largely lost in the discussion is the fact that, in the eight years that the federal government has funded embryonic stem cell research, the proposed benefits are still wholly speculative (President Obama admits the potential benefit “remains unknown”). To date no human embryonic stem cells have actually been used to cure or treat diseases (although the FDA recently cleared the California-based company Geron to use human embryonic stem cells for clinical trial). Adult stem cells, on the other hand, have already helped with over 73 diseases (this according to the Family Research Council and peer-reviewed published research). Time will tell what scientists can do with iPSCs, but remarkable research is already being done. In fact, Dr. Oz surprised Michael J. Fox and Oprah Whinfrey when he declared on her show that “the stem cell debate is dead”. It is not embryonic stem cell research that will ultimately cure diseases like Parkinson’s, he maintains, but rather iPSCs. Dr. Oz believes iPSC based cures are less than ten years away.

Of course, even if you want to defend the ethical merits of embryonic stem cell research, do not confuse the debate over the federal funding of embryonic stem cell research with the debate over embryonic stem cell research itself. The opportunity for private corporations to acquire and study fetal tissue samples has long been in place. For those individuals and companies who have no ethical qualms with the “therapeutic” killing of embryos, they have the legal freedom to pursue their research on their own time and their own dime. Objecting taxpayers need not foot the bill, until now. That’s how the federal funding of embryonic stem cell research changes the debate. To better illustrate this distinction, let’s compare embryonic stem cell research with legal prostitution. As you may or may not know, prostitution is lawful throughout much of the state of Nevada. Despite the fact that lots of people find prostitution to be morally reprehensible, the state of Nevada has made it lawful for its citizens to engage in. Now what if, instead of just making prostitution legal, Nevada also made it state funded requiring its citizens to pay the operating costs of brothels across the state? You see where we’re going with this. A strong case can be made for outlawing embryonic stem cell research outright, just as a strong case can be made for outlawing prostitution outright. But even if you’re going to defend the merits of the practices in question, how can it possibly be reasonable for objecting citizens to be made to pay for them?!

The reason people who oppose abortion tend to also oppose embryonic stem cell research is because extracting stem cells from embryos kills them. Embryonic stem cell lines cannot be established apart from dead embryos. Therefore, since embryos (just like fetuses and newborns and infants and adults) are human beings, embryonic stem cell research is unjust and unjustified. It is the killing of one person (actually many persons) in the theoretic attempt to save other people. Is it justifiable to kill one person in order to spare someone else from disease? At its essence, the driving philosophy behind embryonic stem cell research is one that places less value on individual human life than it does on the “greater human good”. While this may sound altruistic on the surface, it has been the historic basis for all manner of human rights abuses.

Read the original here:
Facts About Abortion: Stem Cell Research and Abortion

Posted in Stem Cell Research | Comments Off on Facts About Abortion: Stem Cell Research and Abortion

Science Friction: Stem Cell Research – YouTube

Posted: November 27, 2017 at 12:44 am

The third instalment of RT’s documentary series, ‘Science Friction’ where science and society collide, explores one of the most controversial issues in the history of science: the human embryo and its use in the ground-breaking field of stem cell research.

In this episode, presenter Liz Bonnin embarks on a journey to meet the different people, both within and outside the science community, whose lives are touched by the controversy surrounding the embryo. Liz talks to 22-year-old Geoff Harte, who was left paralysed after breaking his neck in a school rugby match, and now believes that stem cells may one day help him to walk again.

We also hear from Stephen Sullivan, a Harvard based Irish scientist who uses frozen embryos left over as a result of IVF treatment, as a source of stem cells for his groundbreaking research. On the flip side of the coin, Martin Clynes, a scientist at Dublin City University, explains why he passionately believes that research which destroys human embryos is morally unacceptable.

And finally, Liz meets Lisa O’Callaghan who, after giving birth to a daughter thanks to IVF treatment, now finds herself with frozen embryos of her own and confusion over what will become of them. O’Callaghan is not alone; this is an issue particularly relevant to Ireland, where the status of the embryo is mired in ambiguity and embryonic stem cell research remains a no-go area for scientists.

Stem cell research is one of the most exciting branches of modern medical science. Stem cells have the ability to transform themselves into any of the over 200 different types of cells found in the human body. Stem cells have been hailed by many scientists as the source of potential treatments for currently incurable conditions such as Parkinson’s Disease, Multiple Sclerosis, and spinal injury.

However it’s not a straight-forward ‘good news’ story because according to a large body of scientists, the best source of stem cells is currently the human embryo and in order to remove the stem cells, the embryo must be destroyed.

The controversy revolves around people’s perception of the embryo. To some, it is the very early stage in the life of a human being and must be afforded the same rights as a fully developed person. But, to others, it is a collection of cells which, while having the potential to become a human being, can justifiably be used instead to treat terrible diseases.

In this compelling documentary, Bonnin confronts the fact that, sooner or later, the Irish public will have to make a decision on how we view the human embryo.

Read the original:
Science Friction: Stem Cell Research – YouTube

Posted in Stem Cell Research | Comments Off on Science Friction: Stem Cell Research – YouTube

Adult Stem Cells – Official Site

Posted: November 24, 2017 at 9:41 am

This website provides scientific facts and concise information for those of us who are not scientists, researchers or medical professionals. You will learn answers toquestions like …”Who is benefitting from stem cell research and therapies today?” and “What types of stem cells are working?” In addition, basic questions such as”What is a stem cell?””Why do we need stem cell research?” are answered.

The video patient profiles featured on this site emphasize ADULT stem cell advances with the goal of informing and the hope of inspiring you to take action. These real-life stories represent a small sampling of people and the many diseases and conditions now being helped by adult stem cells naturally found in the human body. Stem Cell Research Facts illustrates how current adult treatments and therapies directly impact the lives of patients and their families today – as opposed to debating themerits of other types of stem cell research.

We invite you to discover, learn and share the incredible possibilites of stem cell research. We welcome your feedback and encourage you to return for the latest developments in the world of stem cell research. Thank you!

Original post:
Adult Stem Cells – Official Site

Posted in Stem Cell Research | Comments Off on Adult Stem Cells – Official Site

Focus on Stem Cell Research | National Institute of …

Posted: September 7, 2017 at 5:48 pm

Stem cells possess the unique ability to differentiate into many distinct cell types in the body, including brain cells, but they also retain the ability to produce more stem cells, a process termed self-renewal. There are multiple types of stem cell, such as embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, and adult or somatic stem cells. While various types of stem cells share similar properties there are differences as well. For example, ES cells and iPS cells are able to differentiate into any type of cell, whereas adult stem cells are more restricted in their potential. The promise of all stem cells for use in future therapies is exciting, but significant technical hurdles remain that will only be overcome through years of intensive research.

NINDS supports a diverse array of research on stem cells, from studies of the basic biology of stem cells in the developing and adult mammalian brain, to studies focusing on nervous system disorders such as ALS or spinal cord injury. Other examples of NINDS funded research include using iPS cells to derive dopamine-producing neurons that might alleviate symptoms in patients with Parkinsons disease, and using ES cells to generate cerebral organoids to model Zika virus infection. To search the complete list of stem cell research projects funded by NIH please go to NIH RePORTER. The NIHs total investment in SCI can be found in categorical spending.

For information on NINDS clinical trials please see the Clinical Research section, or search ClinicalTrials.gov.

A complete, searchable list of funding opportunities is available under Funding. Please be aware that if you plan to request $500,000 or more in direct costs you must contact the appropriate Program Director at least 6 weeks before submission to obtain approval. For more information please see the eRA User Guide ($500K requests).

Go here to see the original:
Focus on Stem Cell Research | National Institute of …

Posted in Stem Cell Research | Comments Off on Focus on Stem Cell Research | National Institute of …

Page 11234..1020..»