New molecular-level understanding of the brain's recovery after stroke

Posted: Published on June 14th, 2013

This post was added by Dr. Richardson

June 13, 2013 A specific MicroRNA, a short set of RNA (ribonuclease) sequences, naturally packaged into minute (50 nanometers) lipid containers called exosomes, are released by stem cells after a stroke and contribute to better neurological recovery according to a new animal study by Henry Ford Hospital researchers.

The important role of a specific microRNA transferred from stem cells to brain cells via the exosomes to enhance functional recovery after a stroke was shown in lab rats. This study provides fundamental new insight into how stem cells affect injured tissue and also offers hope for developing novel treatments for stroke and neurological diseases, the leading cause of long-term disability in adult humans.

The study is being published in the journal Stem Cells.

Although most stroke victims recover some ability to voluntarily use their hands and other body parts, nearly half are left with weakness on one side of their body, while a substantial number are permanently disabled.

Currently no treatment exists for improving or restoring this lost motor function in stroke patients, mainly because of mysteries about how the brain and nerves repair themselves.

"This study may have solved one of those mysteries by showing how certain stem cells play a role in the brain's ability to heal itself to differing degrees after stroke or other trauma," says study author Michael Chopp, Ph.D., scientific director of the Henry Ford Neuroscience Institute and vice chairman of the department of Neurology at Henry Ford Hospital.

The researchers noted that Henry Ford's Institutional Animal Care and Use Committee approved all the experimental procedures used in the new study.

The experiment began by isolating mesenchymal stem cells (MSCs) from the bone marrow of lab rats. These MSCs are then genetically altered to release exosomes that contain specific microRNA molecules. The MSCs then become "factories" producing exosomes containing specific microRNAs. These microRNAs act as master switches that regulate biological function.

The new study showed for the first time that a specific microRNA, miR-133b, carried by these exosomes contributes to functional recovery after a stroke.

The researchers genetically raised or lowered the amount of miR-133b in MSCs and, respectively, treated the rats. When these MSCs are injected into the bloodstream 24 hours after stroke, they enter the brain and release their exosomes. When the exosomes were enriched with the miR-133b, they amplified neurological recovery, and when the exosomes were deprived of the miR-133b, the neurological recovery was substantially reduced.

Go here to read the rest:
New molecular-level understanding of the brain's recovery after stroke

Related Posts
This entry was posted in Mesenchymal Stem Cells. Bookmark the permalink.

Comments are closed.