Researchers regenerate a fully functional bioengineered salivary gland

Posted: Published on October 4th, 2013

This post was added by Dr. Richardson

Oct. 2, 2013 The research group led by Professor Takashi Tsuji of Tokyo University of Science and Organ Technologies Inc. has provided a proof-of-concept for bioengineered mature organ replacement as a regenerative therapy.

Current advances in regenerative therapies have been influenced by the study of embryonic development, stem cell biology, and tissue engineering technologies. The ultimate goal of regenerative therapy is to develop fully functional bioengineered tissues that can replace lost or damaged organs following disease, injury or aging. A research group led by Professor Takashi Tsuji (Professor in the Research Institute for Science and Technology, Tokyo University of Science, and Director of Organ Technologies Inc.) has provided a proof-of-concept for bioengineered mature organ replacement as a regenerative therapy.

Dr. Tsuji's research group (M. Ogawa et al.) reports the fully functional regeneration of a salivary gland that reproduces the morphogenesis induced by reciprocal epithelial and mesenchymal interactions through the orthotopic transplantation of a bioengineered salivary gland germ as a regenerative organ replacement therapy. The bioengineered germ developed into a mature gland through acinar formations with the myoepithelium and innervation. The bioengineered submandibular gland produced saliva in response to the administration of pilocarpine and gustatory stimulation by citrate, protected against oral bacterial infection and restored normal swallowing in a salivary gland defect mouse model. Thus, this study provides a proof-of-concept for bioengineered salivary gland regeneration as a potential treatment for xerostomia.

This research was performed in collaboration with Professor Tetsuhiko Tachikawa (Department of Oral Pathology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, JAPAN).

Salivary glands play essential roles in normal upper gastrointestinal tract function and oral health, including the digestion of starch by salivary amylase, swallowing and the maintenance of tooth hard tissues through the production of saliva. There are three major salivary glands -- the parotid, submandibular and sublingual glands -- as well as minor salivary glands. Salivary glands are composedof duct, acinar, and myoepithelial cells.

The disease of salivary gland.

One concept that may be applicable for restoring salivary glands is regenerative therapy, which involves tissue stem-cell transplantation to restore damaged tissues and organs in a variety of diseases. Furthermore, organ replacement regenerative therapy, which can replace lost or damaged organs with a fully functional bioengineered organ, is also expected to provide a novel therapeutic strategy for organ transplantation. Our recent studies have provided proof-of-concept that fully functional regeneration of ectodermal organs, such as teeth and hair follicles, can be achieved by the transplantation of bioengineered organ germs that were reconstituted by our organ germ method (Nat. Methods 4, 227-30, 2007) for organ replacement regenerative therapy (PNAS 106,13475-13480, 2009, Nat. Commun., 3, 784, 2012)

We demonstrated that each bioengineered salivary gland germ, including the submandibular and sublingual glands, had the potential to regenerate into mature glands using our previously developed organ germ method. After three days in organ culture, all of the bioengineered salivary gland germs underwent branching morphogenesis, followed by stalk elongation and cleft formation.

Engraftment of a bioengineered salivary gland

Saliva, which is produced from serous- and mucous-type acinar cells, plays essential roles in oral function. Histological analysis using haematoxylin and eosin (HE) staining and periodic acid and Schiff (PAS) staining revealed a distinctive acinar structure, including serous acinar cells, in the bioengineered submandibular gland and mucous acinar cells in the bioengineered sublingual gland. E-cadherin and calponin proteins were detected in the acinar and duct cells as well as in myoepithelial cells, which enveloped acinar cells in these bioengineered glands. Innervations were also detected in the interstitial tissue among acinar cells, and neurofilament H (NF-H)-expressing nerve fibres connected to calponin-positive myoepithelial cells. Our research demonstrates that engrafted bioengineered salivary gland germ cells successfully formed correct tissue structures and could secrete saliva in response to neural stimulation.

See the original post here:
Researchers regenerate a fully functional bioengineered salivary gland

Related Posts
This entry was posted in Mesenchymal Stem Cells. Bookmark the permalink.

Comments are closed.