Sanford-Burnham and Intrexon Corporation establish collaboration to accelerate stem cell research

Posted: Published on January 3rd, 2013

This post was added by Dr Simmons

Public release date: 3-Jan-2013 [ | E-mail | Share ]

Contact: Heather Buschman hbuschman@sanfordburnham.org 858-795-5343 Sanford-Burnham Medical Research Institute

LA JOLLA, Calif., January 3, 2013 Sanford-Burnham Medical Research Institute, a nonprofit research institution and one of the largest iPSC generators in the world, and Intrexon Corporation, a leading synthetic biology company, today announced a new collaboration to accelerate stem cell research. Under the agreement, Sanford-Burnham will gain access to sophisticated proprietary cellular selection and gene regulation technologies that are not currently on the market, including Intrexon's Laser-Enabled Analysis and Processing (LEAP) instrument and RheoSwitch Therapeutic System (RTS). As part of the agreement, Intrexon may obtain commercial and intellectual property rights resulting from technological advances made under the collaboration.

"I'm looking forward to merging and melding our expertise," said Evan Y. Snyder, M.D., Ph.D., professor and director of Sanford-Burnham's Stem Cell Research Center and Stem Cell and Regenerative Biology Program. "We'll bring our iPSC and gene therapy expertise to the table. Likewise, our colleagues at Intrexon will share their knowledge of how best to use the technologies. We envision we'll be meeting with them frequently and sharing insights to further advance the platforms for stem cell applications."

Sanford-Burnham is currently building the world's largest collection of human iPSCs generated from individual patients and healthy volunteers. The Stem Cell Research Center's expertise and resources are available to all Sanford-Burnham scientists, as well as other researchers at nonprofit and for-profit research organizations around the world.

LEAP for induced pluripotent stem cells

The LEAP instrument is an automated system that provides high-throughput cell imaging coupled with versatile laser-based cell processing. The instrument's applications include rapid and accurate in situ purification of adherent cells and cell colonies, features that are particularly useful when working with complex human iPSC cultures. The LEAP instrument enables scientists in Sanford-Burnham's Stem Cell Research Center to improve and accelerate their methods for generating human iPSCs and their differentiated progeny, which are used in the study of a variety of diseases. iPSCs are stem cells derived from adult cellsa research advance that garnered the 2012 Nobel Prize in Physiology or Medicine.

"Intrexon's LEAP instrument will allow us to isolate high-quality human iPSCs while eliminating non- or partially-reprogrammed cells or other undesirable cell types in the culturea laborious process that previously took a trained technician a lot of time," explained Yang Liu, Ph.D., manager of Sanford-Burnham's Stem Cell Research Center. "Together with other automated equipment available in our facility, the new capabilities will free up valuable resources, allowing us to provide an even greater level of service to our internal and external users."

"We are big believers in iPSCs and their potential for use in new therapeutic modalities," said Fred Koller, Ph.D., vice president and executive director of the Intrexon Institute for Biomolecular Research. "It's exciting for us to use our technology collaboratively with Sanford-Burnham's team of premier scientists. We look forward to applying LEAP, RTS and other Intrexon tools in this stem cell research, and are proud to assist in the diverse medical advancements enabled by this collaborative effort with Sanford-Burnham."

Controlling gene expression with RTS

Read more:
Sanford-Burnham and Intrexon Corporation establish collaboration to accelerate stem cell research

Related Posts
This entry was posted in Stem Cell Research. Bookmark the permalink.

Comments are closed.