Terahertz Chip Identifies Short Strands of DNA

Posted: Published on August 9th, 2014

This post was added by Dr P. Richardson

Take a short, single strand of DNA, zap it with terahertz waves and watch how it vibrates. Voila, a machine that can detect DNA sequences.

One of the more significant practical challenges currently occupying molecular biologists is to find better ways of identifying short strands of DNA. Called oligonucleotides, these strands of nucleotides are hugely useful in processes such as genetic testing, forensics and DNA amplification.

But identifying the strands is a somewhat laboured business. Almost every detection method relies on fluorescent dyes and markers that can be picked up by optical sensors providing a useful but indirect indication of the molecules that are present.

But molecular biologists would like a better system that measures the characteristics of the molecules involved and so provides direct evidence of the sequence of nucleotides. Indeed, various research teams are working on such systems, some with significant success.

Today, Andrey Chernev at St Petersburg Academic University in Russia and a few pals say they have invented an entirely new way of identifying oligonucleotides using terahertz radiation. Our results demonstrate a new method for label-free, real-time oligonucleotide characterisation, they say.

An oligonucleotide is a short single-stranded DNA or RNA molecule usually consisting of fewer than a hundred or so bases. The sequence of these bases determines the type of oligonucleotide. So the ideal detection mechanism would reveal this sequence.

Chernev and cos idea is based on the way these molecules resonate. They say that the sequence of bases in an oligonucleotide determines the way in which the strand resonates at frequencies in the terahertz range. Their idea is to capture a single oligonucleotide in a cavity filled with terahertz waves that stimulates this resonant behaviour.

They begin by producing a signal as close as possible to the resonant mode. By measuring the output from this cavity, they can determine when the input spectra exactly matches the resonant modes of the molecule. That tells them exactly what sort of oligonucleotide they have.

Thats the theory and they have tested it using a device they call a silicon nanosandwich, a quantum well of p-type silicon surrounded by barriers doped with boron. This produces terahertz radiation inside the well where the oligonucleotide is deposited at a concentration that allows a single molecule to enter.

Read this article:
Terahertz Chip Identifies Short Strands of DNA

Related Posts
This entry was posted in DNA. Bookmark the permalink.

Comments are closed.