Vitamin C helps control gene activity in stem cells

Posted: Published on July 3rd, 2013

This post was added by Dr. Richardson

July 1, 2013 Vitamin C affects whether genes are switched on or off inside mouse stem cells, and may thereby play a previously unknown and fundamental role in helping to guide normal development in mice, humans and other animals, a scientific team led by UC San Francisco researchers has discovered.

The researchers found that vitamin C assists enzymes that play a crucial role in releasing the brakes that keep certain genes from becoming activated in the embryo soon after fertilization, when egg and sperm fuse.

The discovery might eventually lead to the use of vitamin C to improve results of in vitro fertilization, in which early embryos now are typically grown without the vitamin, and also to treat cancer, in which tumor cells abnormally engage or release these brakes on gene activation, the researchers concluded in a study published June 30, 2013 in the journal Nature.

In the near term, stem-cell scientists may begin incorporating vitamin C more systematically into their procedures for growing the most healthy and useful stem cells, according to UCSF stem-cell scientist Miguel Ramalho-Santos, PhD, who led the study. In fact, the unanticipated discovery emerged from an effort to compare different formulations of the growth medium, a kind of nutrient broth used to grow mouse embryonic stem cells in the lab.

Rather than building on any previous body of scientific work, the identification of the link between vitamin C and the activation of genes that should be turned on in early development was serendipitous, Ramalho-Santos said. "We bumped into this result," he said.

Working in Ramalho-Santos' lab, graduate student Kathryn Blaschke and postdoctoral fellow Kevin Ebata, PhD, were comparing different commercial growth media for mouse stem cells. The researchers began exploring how certain ingredients altered gene activity within the stem cells. Eventually they discovered that adding vitamin C led to increased activity of key enzymes that release the brakes that can prevent activation of an array of genes.

The brakes on gene activation that vitamin C helps release are molecules called methyl groups. These methyl groups are added to DNA at specific points along the genome to prevent specific genes from getting turned on.

During the development of multicellular organisms, humans among them, different patterns of methylation arise in different cells as methyl groups are biochemically attached to DNA at specific points along the genome during successive cell divisions. Normally this gradual methylation, a key part of the developmental program, is not reversible.

But after fertilization and during early development, a class of enzymes called "Tet" acts on a wide array of the methyl groups on the DNA to remove these brakes, so that genes can be activated as needed.

The UCSF researchers demonstrated that Tet enzymes require vitamin C for optimal activity as they act to remove the methyl groups from the DNA and to stimulate gene activity that more faithfully mimics in cultured stem cells what occurs at early stages of development in the mouse embryo.

Excerpt from:
Vitamin C helps control gene activity in stem cells

Related Posts
This entry was posted in Stem Cell Human Trials. Bookmark the permalink.

Comments are closed.