Worcester Polytechnic Institute Receives $1.94 Million NIH Grant for Cardiac Regeneration Research

Posted: Published on September 1st, 2013

This post was added by Dr. Richardson

Worcester, MA (PRWEB) August 28, 2013

The National Institutes of Health (NIH) has awarded a five-year, $1.94 million grant to a biomedical research team at Worcester Polytechnic Institute (WPI) working at the forefront of cell therapies for healing cardiac muscle damaged by heart attack or chronic disease.

Funded through the NIH's premiere Research Project Grant (R01) program, the project will be led by Glenn Gaudette, PhD, associate professor of biomedical engineering at WPI, working in close collaboration with George Pins, PhD, associate professor of biomedical engineering at WPI, and Michael Laflamme, MD, PhD, associate professor of pathology at the University of Washington.

"We are grateful for the support of the National Institutes of Health and we hope that this intensive program of research will advance cell therapies for people who suffer from heart disease," Gaudette said.

The multifaceted research program funded by the NIH grant is based on the use of biopolymer microthreads to deliver adult stem cells into damaged hearts to promote muscle regeneration. The microthreads, each about the width of a human hair, can be braided into cable-like structures that mimic natural connective tissues. First developed in Pins's lab as a potential tool for repairing torn anterior cruciate ligaments (ACL) in the knee, the microthreads were transformed by Gaudette and Pins into biological sutures that can be used to stitch stem cells directly into wound sites and damaged tissues.

During a heart attack, vessels that deliver blood and oxygen to the heart are choked off, damaging sections of cardiac muscle. The damaged or "infarcted" muscle scars over and becomes rigid and unable to contract, diminishing the heart's ability to pump blood. The ultimate goal of Gaudettes team is to use the regenerative capabilities of adult stem cells to transform portions of that scarred tissue back into working heart muscle.

"Earning this gold-standard, competitive award from the National Institutes of Health is a wonderful affirmation of the work Professors Gaudette and Pins are doing, and the importance of the collaborative model of research our faculty are pursuing," said WPI Provost Eric Overstrm, PhD. "Over the past 10 years, WPI has invested strategically in life sciences and bioengineering programs because the convergence of biology and engineering will enable a range of new therapies and medical devices that will improve human health."

Earlier studies by Gaudette and others have shown that when human mesenchymal stem cells (hMSCs), which are derived from bone marrow, are implanted in damaged hearts, they moderately improve cardiac function. The main limitation of these studies was getting large numbers of hMSCs to engraft into the damaged heart tissue. The methods used at the timeinjecting the cells into the bloodstream or directly into the heart muscleyielded very low results, with 15 percent or less of the cells injected actually surviving and attaching to the heart muscle. Most cells were washed away by the bloodstream.

To improve cell delivery, Gaudette and Pins developed the microthread technology as a provisional "scaffold" or a temporary structure to carry the cells into the damaged heart tissue. In early studies, the WPI team was able to grow up to 40,000 adult stem cells on each centimeter of a microthread suture. When the microthreads were stitched into an infarcted rat heart, more than 60 percent of the cells successfully engrafted into the cardiac muscle.

Over the next five years, the team will work to improve the technology in several ways in hopes of pushing cardiac cell therapy closer to human trials. "Congratulations to WPI, as well as Professors Gaudette and Pins, on receiving this NIH grant," said Massachusetts Congressman Jim McGovern. "WPI has a well-deserved reputation as a hub for national biomedical collaborations and cutting-edge advances, and this award is testament to the brilliant work being done there day in and day out."

See original here:
Worcester Polytechnic Institute Receives $1.94 Million NIH Grant for Cardiac Regeneration Research

Related Posts
This entry was posted in Stem Cell Human Trials. Bookmark the permalink.

Comments are closed.