How a Silly Putty ingredient could advance stem cell therapies

Posted: Published on April 14th, 2014

This post was added by Dr Simmons

PUBLIC RELEASE DATE:

13-Apr-2014

Contact: Nicole Casal Moore ncmoore@umich.edu 734-647-7087 University of Michigan

ANN ARBORThe sponginess of the environment where human embryonic stem cells are growing affects the type of specialized cells they eventually become, a University of Michigan study shows.

The researchers coaxed human embryonic stem cells to turn into working spinal cord cells more efficiently by growing the cells on a soft, utrafine carpet made of a key ingredient in Silly Putty. Their study is published online at Nature Materials on April 13.

This research is the first to directly link physical, as opposed to chemical, signals to human embryonic stem cell differentiation. Differentiation is the process of the source cells morphing into the body's more than 200 cell types that become muscle, bone, nerves and organs, for example.

Jianping Fu, U-M assistant professor of mechanical engineering, says the findings raise the possibility of a more efficient way to guide stem cells to differentiate and potentially provide therapies for diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease), Huntington's or Alzheimer's.

In the specially engineered growth systemthe 'carpets' Fu and his colleagues designedmicroscopic posts of the Silly Putty component polydimethylsiloxane serve as the threads. By varying the post height, the researchers can adjust the stiffness of the surface they grow cells on. Shorter posts are more rigidlike an industrial carpet. Taller ones are softermore plush.

The team found that stem cells they grew on the tall, softer micropost carpets turned into nerve cells much faster and more often than those they grew on the stiffer surfaces. After 23 days, the colonies of spinal cord cellsmotor neurons that control how muscles movethat grew on the softer micropost carpets were four times more pure and 10 times larger than those growing on either traditional plates or rigid carpets.

"This is extremely exciting," Fu said. "To realize promising clinical applications of human embryonic stem cells, we need a better culture system that can reliably produce more target cells that function well. Our approach is a big step in that direction, by using synthetic microengineered surfaces to control mechanical environmental signals."

View post:
How a Silly Putty ingredient could advance stem cell therapies

Related Posts
This entry was posted in Stem Cell Research. Bookmark the permalink.

Comments are closed.