The New Synthetic Biology: Who Gains?

Posted: Published on April 29th, 2014

This post was added by Dr P. Richardson

Biologys Brave New World: The Promise and Perils of the Synbio Revolution

by Laurie Garrett

Foreign Affairs, November/December 2013

The possibility of the deliberate creation of living organisms from elementary materials that are not themselves alive has engaged the human imagination for a very long time. Putting aside Genesis I, which is singularly lacking in any physical details on the bringing forth of life from the waters and the dust, we think immediately of the classical Greek story of the sculptor Pygmalion. Enamored of the unresponsive goddess Aphrodite, he creates an ivory statue of her, which, under the warmth of his caresses and the powers of Aphrodite herself, slowly softens and warms into a living woman, Galatea. Nor is Galatea any less a biological woman, for she becomes the mother of two children from her union with her human creator.

By the middle of the seventeenth century, Descartes had described the life activities of animals as the functioning of a bte machine and in 1748 La Mettrie extended this metaphor to humans as lhomme machine. The acceptance of the machine metaphor has the implication that, just as we can deliberately design and build a mechanical device from manufactured parts, so it must be possible to create new kinds of living organisms through the deliberate design and assembly of manufactured elements once the chemical and structural properties of already existing natural life forms have been understood.

But if the machine metaphor for living organisms is to work, we require more than a description and construction of the gears and levers. Somehow a dynamic force must be introduced. Even a mechanical clock requires an input of energy to wind it up over and over, and an electrically driven machine must have a constant input of energy from physical sources or chemical reactions. The view of living organisms as machines was then incomplete without the addition in the last quarter of the eighteenth century of the discoveries by Volta of the chemical generation of electric energy and of Galvanis demonstration of the induction of twitching in the dissected muscles of frogs by bringing them in contact with combinations of different metals.

The question that remains is why one would want to commit oneself to such a project of creating a living organism from basic elements, given the great resources that are required and the considerable possibility of failure. In part it is a reflection of the power of a commitment to fulfillment of an intellectual program. Mary Shelley and her brother, as well as Lord Byron, belonged to an intellectual circle of Galvanists who believed that the life activities of organisms, including their mental processes, are basically manifestations of chemical reactions in the body. While Mary Shelley did not specify the details, in addition to the bones and other anatomical parts that Dr. Frankenstein collected for his project of creating a living organism, he included instruments with which he could infuse a spark of being into the lifeless thing that lay before him.

There is also, of course, ambition for achievement and fame. Over the door of what was originally Harvards Germanic Museum is this conveniently ambiguous line from Schillers Death of Wallenstein: Es ist der Geist der sich den Krper baut. (It is the spirit that builds the body.)1 Victor Frankensteins soul cries out to him:

In modern times Craig Venter, the head of the J. Craig Venter Institute, announced the creation of a living, functioning, self-reproducing artificial bacterial cell containing a laboratory-produced DNA sequence that, according to Laurie Garretts Foreign Affairs essay Biologys Brave New World, moved, ate, breathed, and replicated itself.

An element that was not yet present in the early-nineteenth-century interest in the artificial creation of life was the possibility of great financial profit. Biotechnology was still a century and a half in the future. Garrett characterizes Venter not only as the most powerful man in biotechnology but as the richest. The J. Craig Venter Institute has already worked with fuel companies and the pharmaceutical industry to create microorganisms that could produce new fuels and vaccines.2

Originally posted here:
The New Synthetic Biology: Who Gains?

Related Posts
This entry was posted in Biology. Bookmark the permalink.

Comments are closed.