Connectivity-based parcellation of the amygdala and identification of … – Nature.com

Posted: Published on January 27th, 2023

This post was added by Alex Diaz-Granados

LeDoux, J. The emotional brain, fear, and the amygdala. Cell. Mol. Neurobiol. https://doi.org/10.1023/A:1025048802629 (2003).

Article Google Scholar

Wassum, K. M. & Izquierdo, A. The basolateral amygdala in reward learning and addiction. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2015.08.017 (2015).

Article Google Scholar

Xue, Y., Steketee, J. D. & Sun, W. Inactivation of the central nucleus of the amygdala reduces the effect of punishment on cocaine self-administration in rats. Eur. J. Neurosci. https://doi.org/10.1111/j.1460-9568.2012.08000.x (2012).

Article Google Scholar

Cheetham, A. et al. Amygdala volume mediates the relationship between externalizing symptoms and daily smoking in adolescence: A prospective study. Psychiatr. Res Neuroimag. https://doi.org/10.1016/j.pscychresns.2018.03.007 (2018).

Article Google Scholar

Langevin, J. P., De Salles, A. A. F., Kosoyan, H. P. & Krahl, S. E. Deep brain stimulation of the amygdala alleviates post-traumatic stress disorder symptoms in a rat model. J. Psychiatr. Res. https://doi.org/10.1016/j.jpsychires.2010.04.022 (2010).

Article Google Scholar

Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature https://doi.org/10.1038/nature14188 (2015).

Article Google Scholar

Gouveia, F. V. et al. Amygdala and hypothalamus: Historical overview with focus on aggression. Neurosurgery 0, 120 (2019).

Google Scholar

Koek, R. J. et al. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): Study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation. Trials 15, 356 (2014).

Article Google Scholar

Koek, R. J. et al. Amygdala DBS for PTSD: 2 years of observations on the first case. Brain Stimul. https://doi.org/10.1016/j.brs.2017.01.086 (2017).

Article Google Scholar

Bzdok, D., Laird, A. R., Zilles, K., Fox, P. T. & Eickhoff, S. B. An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum. Brain Mapp. 34, 32473266 (2013).

Article Google Scholar

Saygin, Z. M., Osher, D. E., Augustinack, J., Fischl, B. & Gabrieli, J. D. E. Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. Neuroimage https://doi.org/10.1016/j.neuroimage.2011.03.006 (2011).

Article Google Scholar

Bach, D. R., Behrens, T. E., Garrido, L., Weiskopf, N. & Dolan, R. J. Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2744-10.2011 (2011).

Article Google Scholar

Solano-Castiella, E. et al. Diffusion tensor imaging segments the human amygdala in vivo. Neuroimage https://doi.org/10.1016/j.neuroimage.2009.11.027 (2010).

Article Google Scholar

Fudge, J. L., Kunishio, K., Walsh, P., Richard, C. & Haber, S. N. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience https://doi.org/10.1016/S0306-4522(01)00546-2 (2002).

Article Google Scholar

Goetschius, L. G. et al. Amygdala-prefrontal cortex white matter tracts are widespread, variable and implicated in amygdala modulation in adolescents. Neuroimage 191, 278291 (2019).

Article Google Scholar

McFadyen, J., Mattingley, J. B. & Garrido, M. I. An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. Elife https://doi.org/10.7554/eLife.40766 (2019).

Article Google Scholar

LeDoux, J. E., Cicchetti, P., Xagoraris, A. & Romanski, L. M. The lateral amygdaloid nucleus: Sensory interface of the amygdala in fear conditioning. J. Neurosci. https://doi.org/10.1523/jneurosci.10-04-01062.1990 (1990).

Article Google Scholar

Mormann, F., Bausch, M., Knieling, S. & Fried, I. Neurons in the human left amygdala automatically encode subjective value irrespective of task. Cereb. Cortex https://doi.org/10.1093/cercor/bhx330 (2019).

Article Google Scholar

Van Essen, D. C. et al. The WU-Minn human connectome project: An overview. Neuroimage https://doi.org/10.1016/j.neuroimage.2013.05.041 (2013).

Article Google Scholar

Sotiropoulos, S. N. et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage https://doi.org/10.1016/j.neuroimage.2013.05.057 (2013).

Article Google Scholar

Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage https://doi.org/10.1016/j.neuroimage.2013.04.127 (2013).

Article Google Scholar

Nooner, K. B. et al. The NKI-rockland sample: A model for accelerating the pace of discovery science in psychiatry. Front. Neurosci. 6, 152 (2012).

Article Google Scholar

Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 10631078 (2016).

Article Google Scholar

Woolrich, M. W. et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage https://doi.org/10.1016/j.neuroimage.2008.10.055 (2009).

Article Google Scholar

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782790 (2012).

Article Google Scholar

Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968980 (2006).

Article Google Scholar

Beyeler, A. et al. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Rep. https://doi.org/10.1016/j.celrep.2017.12.097 (2018).

Article Google Scholar

McGarry, L. M. & Carter, A. G. Prefrontal cortex drives distinct projection neurons in the basolateral amygdala. Cell Rep. https://doi.org/10.1016/j.celrep.2017.10.046 (2017).

Article Google Scholar

Zikopoulos, B., Histad, M., John, Y. & Barbas, H. Posterior orbitofrontal and anterior cingulate pathways to the amygdala target inhibitory and excitatory systems with opposite functions. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.3940-16.2017 (2017).

Article Google Scholar

Bari, A. A. et al. Amygdala structural connectivity is associated with impulsive choice and difficulty quitting smoking. Front Behav. Neurosci. 14, 117 (2020).

Article CAS Google Scholar

Weiss, A. et al. Microsurgical anatomy of the amygdaloid body and its connections. Brain Struct. Funct. https://doi.org/10.1007/s00429-020-02214-3 (2021).

Article Google Scholar

Amunts, K. et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anat. Embryol. https://doi.org/10.1007/s00429-005-0025-5 (2005).

Article Google Scholar

Nieuwenhuys, R., Voogd, J. & Van Huijzen, C. The human central nervous. System 253286, 427653 (2008).

Google Scholar

Cui, Z., Zhong, S., Xu, P., He, Y. & Gong, G. PANDA: A pipeline toolbox for analyzing brain diffusion images. Front Hum. Neurosci. https://doi.org/10.3389/fnhum.2013.00042 (2013).

Article Google Scholar

Jbabdi, S., Sotiropoulos, S. N., Savio, A. M., Graa, M. & Behrens, T. E. J. Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magn. Reson. Med. 68, 18461855 (2012).

Article Google Scholar

Behrens, T. E. J. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 50, 10771088 (2003).

Article CAS Google Scholar

Mai, J. K. & Paxinos, G. The human nervous system. Hum. Nerv. Syst. https://doi.org/10.1016/C2009-0-02721-4 (2012).

Article Google Scholar

Amunts, K. et al. BigBrain: An ultrahigh-resolution 3D human brain model. Science 340, 14721475 (2013).

Article ADS CAS Google Scholar

Edlow, B. L. et al. 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci. Data 6, 244 (2019).

Article Google Scholar

Saygin, Z. M. et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: Manual segmentation to automatic atlas. Neuroimage https://doi.org/10.1016/j.neuroimage.2017.04.046 (2017).

Article Google Scholar

LeDoux, J. The amygdala. Curr. Biol. https://doi.org/10.1016/j.cub.2007.08.005 (2007).

Article Google Scholar

Petrov, T., Krukoff, T. L. & Jhamandas, J. H. Branching projections of catecholaminergic brainstem neurons to the paraventricular hypothalamic nucleus and the central nucleus of the amygdala in the rat. Brain Res. https://doi.org/10.1016/0006-8993(93)90858-K (1993).

Article Google Scholar

Veening, J. G., Swanson, L. W. & Sawchenko, P. E. The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: A combined retrograde transport-immunohistochemical study. Brain Res. https://doi.org/10.1016/0006-8993(84)91220-4 (1984).

Article Google Scholar

Solano-Castiella, E. et al. Parcellation of human amygdala in vivo using ultra high field structural MRI. Neuroimage 58, 741748 (2011).

Article Google Scholar

Langevin, J.-P. The amygdala as a target for behavior surgery. Surg. Neurol. Int. https://doi.org/10.4103/2152-7806.91609 (2012).

Article Google Scholar

Felix-Ortiz, A. C. et al. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron https://doi.org/10.1016/j.neuron.2013.06.016 (2013).

Article Google Scholar

Bukalo, O. et al. Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci. Adv. https://doi.org/10.1126/sciadv.1500251 (2015).

Article Google Scholar

Ortega, E. R., Caadas, F., Carvajal, F. & Cardona, D. In vivo stimulation of locus coeruleus: Effects on amygdala subnuclei. Acta Neurobiol. Exp. (Wars) https://doi.org/10.21307/ane-2017-060 (2017).

Article Google Scholar

Abivardi, A. & Bach, D. R. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo. Hum. Brain Mapp. 38, 39273940 (2017).

Article Google Scholar

Sakai, S. T., Inase, M. & Tanji, J. Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): A double anterograde labeling study. J. Comp. Neurol. 368, 215228 (1996).

Article CAS Google Scholar

Here is the original post:
Connectivity-based parcellation of the amygdala and identification of ... - Nature.com

Related Posts
This entry was posted in Hypothalamus. Bookmark the permalink.

Comments are closed.